Red de monitorización para automatizar el sistema de enfriamiento de un centro de datos

Contenido principal del artículo

José Ignacio Vega Luna http://orcid.org/0000-0002-4226-2936
Francisco Javier Sánchez-Rangel https://orcid.org/0000-0002-4182-5856
Gerardo Salgado-Guzmán http://orcid.org/0000-0002-0581-7410
José Francisco Cosme-Aceves http://orcid.org/0000-0002-6875-5683
Víctor Noé Tapia-Vargas http://orcid.org/0000-0002-1160-2432
Mario Alberto Lagos-Acosta https://orcid.org/0000-0003-0455-007X

Resumen

El objetivo de este trabajo fue desarrollar una red de monitorización de temperatura, humedad y calidad del aire en un centro de datos para la automatización del encendido y apagado del sistema de enfriamiento, ventilación y filtrado de aire usando Internet de las cosas (IoT-Internet of Things). Se puso en marcha una red con tecnología inalámbrica de largo alcance compuesta por cinco nodos esclavo, un nodo maestro y una interfaz de usuario. Los nodos esclavo transmiten periódicamente al nodo maestro el valor de las tres variables de ambiente. El nodo maestro envía la información recibida de los esclavos a un servidor en la nube para poder ser accedida desde una interfaz de usuario. Cuando el valor de alguna de las variables alcanza el umbral configurado se enciende el sistema de enfriamiento, ventilación y/o filtrado de aire, según sea el caso. Las pruebas mostraron que se logró una precisión menor a ±1.0 °C en la medida de temperatura, menor a ±2 % en la medida de humedad, menor a ±8 μg/m³ en la medida de la calidad del aire y un alcance de 11.5 kilómetros con línea de vista en la transmisión de datos en la red. Según estos resultados, la red puede ponerse en funcionamiento para la monitorización de sensores y procesos en otras instalaciones con este alcance.
Abstract 332 | PDF Downloads 196 PDF (English) Downloads 18 HTML Downloads 77 HTML (English) Downloads 26 EPUB Downloads 14 EPUB (English) Downloads 6 XML Downloads 0

Citas

[1] X. Ma, Z. Zhang, and S. Su, “Costaware multi-domain virtual data center embedding,” China Communications, vol. 15, no. 12, pp. 190–207, 2018. [Online]. Available: https://bit.ly/2XT3VUB
[2] C. Sun, Y. Wen, P. Li, W. Ye, J. Yang, J. Qiu, and J. Wen, “Self-contained wireless hall current sensor applied for two-wire zip-cords,” IEEE Transactions on Magnetics, vol. 52, no. 7, pp. 1–4, 2016. [Online]. Available: https://doi.org/10.1109/TMAG.2016.2524671
[3] S. Baig, W. Iqbal, J. L. Berral, A. Erradi, and D. Carrera, “Real-time data center’s telemetry reduction and reconstruction using markov chain models,” IEEE Systems Journal, vol. 13, no. 4, pp. 4039–4050, 2019. [Online]. Available: https://doi.org/10.1109/JSYST.2019.2918430
[4] G. Zhabelova, M. Vesterlund, S. Eschmann, Y. Berezovskaya, V. Vyatkin, and D. Flieller, “A comprehensive model of data center: From cpu to cooling tower,” IEEE Access, vol. 6, pp. 61 254–61 266, 2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2875623
[5] SEGOB, Declaratoria de vigencia de la Norma Mexicana NMX-C-506-ONNCCE-2015. Diario Oficial de la Federación. Secretaría de Gobernación. México., 2015. [Online]. Available: https://bit.ly/2BYWOS1
[6] TIA. (2019) Tia launches ansi/tia-942 accreditation scheme for certification of data centers, selects certac to manage program. [Online]. Available: https://bit.ly/2XTtgxB
[7] Q. Ren, L. Wang, J. Huang, C. Zhang, and Q. Huang, “Simultaneous remote sensing of temperature and humidity by lc-type passive wireless sensors,” Journal of Microelectromechanical Systems, vol. 24, no. 4, pp. 1117–1123, 2015. [Online]. Available: https://doi.org/10.1109/JMEMS.2014.2384591
[8] C. Jiang, Y. Qiu, H. Gao, T. Fan, K. Li, and J. Wan, “An edge computing platform for intelligent operational monitoring in internet data centers,” IEEE Access, vol. 7, pp. 133 375–133 387, 2019. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2939614
[9] M. Ayaz, M. Ammad-uddin, I. Baig, and E. M. Aggoune, “Wireless sensor’s civil applications, prototypes, and future integration possibilities: A review,” IEEE Sensors Journal, vol. 18, no. 1, pp. 4–30, 2018. [Online]. Available: https://doi.org/10.1109/JSEN.2017.2766364
[10] S. Yu, P. Feng, and N. Wu, “Passive and semi-passive wireless temperature and humidity sensors based on epc generation-2 uhf protocol,” IEEE Sensors Journal, vol. 15, no. 4, pp. 2403–2411, 2015. [Online]. Available: https://doi.org/10.1109/JSEN.2014.2375180
[11] D. Morrison, T. Ablitt, and J. Redouté, “Miniaturized low-power wireless sensor interface,” IEEE Sensors Journal, vol. 15, no. 9, pp. 4731–4732, 2015. [Online]. Available: https://doi.org/10.1109/JSEN.2015.2442235
[12] J. Chou, J. Chen, Y. Liao, C. Lai, R. Chen, Y. Tsai, C. Lin, J. Chen, M. Huang, and H. Chou, “Wireless sensing system for flexible arrayed potentiometric sensor based on xbee module,” IEEE Sensors Journal, vol. 16, no. 14, pp. 5588–5595, 2016. [Online]. Available: https://doi.org/10.1109/JSEN.2016.2570285
[13] T. Wang, Z. Su, Y. Xia, and M. Hamdi, “Rethinking the data center networking: Architecture, network protocols, and resource sharing,” IEEE Access, vol. 2, pp. 1481–1496, 2014. [Online]. Available: https://doi.org/10.1109/ACCESS.2014.2383439
[14] O. Georgiou and U. Raza, “Low power wide area network analysis: Can LoRa scale?” IEEE Wireless Communications Letters, vol. 6, no. 2, pp. 162–165, 2017. [Online]. Available: https://doi.org/10.1109/LWC.2016.2647247
[15] Q. Zhou, K. Zheng, L. Hou, J. Xing, and R. Xu, “Design and implementation of open LoRa for IoT,” IEEE Access, vol. 7, pp. 100 649–100 657, 2019. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2930243
[16] T. Elshabrawy and J. Robert, “Interleaved chirp spreading LoRa-based modulation,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3855–3863, 2019. [Online]. Available: https://doi.org/10.1109/JIOT.2019.2892294
[17] B. Buurman, J. Kamruzzaman, G. Karmakar, and S. Islam, “Low-power wide-area networks: Design goals, architecture, suitability to use cases and research challenges,” IEEE Access, vol. 8, pp. 17 179–17 220, 2020. [Online]. Available: https://doi.org/10.1109/ACCESS.2020.2968057
[18] M. Sidorov, P. V. Nhut, Y. Matsumoto, and R. Ohmura, “LoRa-based precision wireless structural health monitoring system for bolted joints in a smart city environment,” IEEE Access, vol. 7, pp. 179 235–179 251, 2019. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2958835
[19] G. Premsankar, B. Ghaddar, M. Slabicki, and M. Di Francesco, “Optimal configuration of LoRa networks in smart cities,” IEEE Transactions on Industrial Informatics, pp. 1–1, 2020. [Online]. Available: https://doi.org/10.1109/TII.2020.2967123
[20] W. Xu, J. Y. Kim, W. Huang, S. S. Kanhere, S. K. Jha, and W. Hu, “Measurement, characterization, and modeling of LoRa technology in multifloor buildings,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 298–310, 2020. [Online]. Available: https://doi.org/10.1109/JIOT.2019.2946900
[21] S. Benaissa, D. Plets, E. Tanghe, J. Trogh, L. Martens, L. Vandaele, L. Verloock, F. A. M. Tuyttens, B. Sonck, and W. Joseph, “Internet of animals: characterisation of LoRa sub-GHz off-body wireless channel in dairy barns,” Electronics Letters, vol. 53, no. 18, pp. 1281–1283, 2017. [Online]. Available: https://doi.org/10.1049/el.2017.1344
[22] F. Wu, J. Redouté, and M. R. Yuce, “We-safe: A self-powered wearable IoT sensor network for safety applications based on LoRa,” IEEE Access, vol. 6, pp. 40 846–40 853, 2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2859383
[23] J. P. Shanmuga Sundaram, W. Du, and Z. Zhao, “A survey on LoRa networking: Research problems, current solutions, and open issues,” IEEE Communications Surveys Tutorials, vol. 22, no. 1, pp. 371–388, 2020. [Online]. Available: https://doi.org/10.1109/COMST.2019.2949598
[24] A. Javed, H. Larijani, and A. Wixted, “Improving energy consumption of a commercial building with IoT and machine learning,” IT Professional, vol. 20, no. 5, pp. 30–38, 2018. [Online]. Available: https://doi.org/10.1109/MITP.2018.053891335
[25] O. Khutsoane, B. Isong, N. Gasela, and A. M. Abu-Mahfouz, “Watergrid-sense: A LoRa-based sensor node for industrial IoT applications,” IEEE Sensors Journal, vol. 20, no. 5, pp. 2722–2729, 2020. [Online]. Available: https://doi.org/10.1109/JSEN.2019.2951345
[26] L. Zhao, W. Wu, and S. Li, “Design and implementation of an IoT-based indoor air quality detector with multiple communication interfaces,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9621–9632, 2019. [Online]. Available: https://doi.org/10.1109/JIOT.2019.2930191
[27] P. Kulkarni, Q. O. A. Hakim, and A. Lakas, “Experimental evaluation of a campus-deployed IoT network using LoRa,” IEEE Sensors Journal, vol. 20, no. 5, pp. 2803–2811, 2020. [Online]. Available: https://doi.org/10.1109/JSEN.2019.2953572
[28] L. Leonardi, F. Battaglia, and L. Lo Bello, “Rt-LoRa: A medium access strategy to support real-time flows over LoRa-based networks for industrial IoT applications,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 812–10 823, 2019. [Online]. Available: https://doi.org/10.1109/JIOT.2019.2942776
[29] K. Lam, C. Cheung, and W. Lee, “Rssi-based LoRa localization systems for large-scale indoor and outdoor environments,” IEEE Transactions on Vehicular Technology, vol. 68, no. 12, pp. 11 778–11 791, 2019. [Online]. Available: https://doi.org/10.1109/TVT.2019.2940272
[30] R. I. S. Pereira, S. C. S. Jucá, P. C. M. Carvalho, and C. P. Souza, “IoT network and sensor signal conditioning for meteorological data and photovoltaic module temperature monitoring,” IEEE Latin America Transactions, vol. 17, no. 06, pp. 937–944, 2019. [Online]. Available: https://doi.org/10.1109/TLA.2019.8896816
[31] X. Zhang, M. Pipattanasomporn, T. Chen, and S. Rahman, “An IoT-based thermal model learning framework for smart buildings,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 518–527, 2020. [Online]. Available: https://doi.org/10.1109/JIOT.2019.2951106
[32] L. Zhao, W. Wu, and S. Li, “Design and implementation of an IoT-based indoor air quality detector with multiple communication interfaces,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9621–9632, 2019. [Online]. Available: https://doi.org/10.1109/JIOT.2019.2930191
[33] M. M. Alam, H. Malik, M. I. Khan, T. Pardy, A. Kuusik, and Y. Le Moullec, “A survey on the roles of communication technologies in IoT-based personalized healthcare applications,” IEEE Access, vol. 6, pp. 36 611–36 631, 2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2853148
[34] J. Ruan, Y. Wang, F. T. S. Chan, X. Hu, M. Zhao, F. Zhu, B. Shi, Y. Shi, and F. Lin, “A life cycle framework of green IoT-based agriculture and its finance, operation, and management issues,” IEEE Communications Magazine, vol. 57, no. 3, pp. 90–96, 2019. [Online]. Available: https://doi.org/10.1109/MCOM.2019.1800332
[35] Q. Wan, Y. Teh, Y. Gao, and P. K. T. Mok, “Analysis and design of a thermoelectric energy harvesting system with reconfigurable array of thermoelectric generators for IoT applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 9, pp. 2346–2358, 2017. [Online]. Available: https://doi.org/10.1109/TCSI.2017.2708763
[36] Y. Han, C. Zhang, L. Wang, and Y. Zhang, “Industrial IoT for intelligent steelmaking with converter mouth flame spectrum information processed by deep learning,” IEEE Transactions on Industrial Informatics, vol. 16, no. 4, pp. 2640–2650, 2020. [Online]. Available: https://doi.org/10.1109/TII.2019.2948100
[37] C. Yang, D. Puthal, S. P. Mohanty, and E. Kougianos, “Big-sensing-data curation for the cloud is coming: A promise of scalable cloud-data-center mitigation for nextgeneration IoT and wireless sensor networks,” IEEE Consumer Electronics Magazine, vol. 6, no. 4, pp. 48–56, 2017. [Online]. Available: https://doi.org/10.1109/MCE.2017.2714695
[38] K. Kaur, S. Garg, G. Kaddoum, E. Bou-Harb, and K. R. Choo, “A big data-enabled consolidated framework for energy efficient software defined data centers in IoT setups,” IEEE Transactions on Industrial Informatics, vol. 16, no. 4, pp. 2687–2697, 2020. [Online]. Available: https://doi.org/10.1109/TII.2019.2939573
[39] L. Yang, Y. Deng, L. T. Yang, and R. Lin, “Reducing the cooling power of data centers by intelligently assigning tasks,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1667–1678, 2018. [Online]. Available: https://doi.org/10.1109/JIOT.2017.2783329
[40] Bosch, “Gas sensor measuring relative humidity, barometric pressure, ambient temperature and gas (VOC) BME680,” Bosch Sensortec GmbH 2020, Tech. Rep., 2017. [Online]. Available: https://bit.ly/2YlAvNS