Control de un sistema de energía basado en volantes de inercia para mitigar los huecos de tensión en el punto de conexión común

Contenido principal del artículo

Mauricio Orellana http://orcid.org/0000-0001-7214-4060
Luis González Morales http://orcid.org/0000-0001-9992-3494
Nuno Abreu Sousa http://orcid.org/0000-0002-3837-0547

Keywords

baterías, volante de inercia, AC/DC, DC/AC, PCC

Resumen

Este artículo presenta el diseño de un sistema de energía basado en volante de inercia para mitigar los huecos de tensión. Con el sistema se mejora la calidad de energía en un punto de una red de distribución, el cual está expuesto a la conexión aleatoria de máquinas eléctricas. Para ello, se modela el sistema de distribución de energía, el sistema de inyección de energía que está compuesto por una máquina eléctrica con volante de inercia, el sistema de conversión de energía bidireccional y el sistema de control de corriente, voltaje y velocidad. El sistema diseñado permite inyectar una potencia de 22.8 kW y capacidad de 1.2 Wh, compensando los transitorios producidos por las cargas conectadas a la red
Abstract 128 | PDF Downloads 46 PDF (English) Downloads 4 HTML Downloads 12 HTML (English) Downloads 6 EPUB Downloads 4 EPUB (English) Downloads 1

Citas

[1] N. S. Gayathri, N. Senroy, and I. N. Kar, “Smoothing of wind power using flywheel energy storage system,” IET Renewable Power Generation, vol. 11, no. 3, pp. 289–298, 2017. [Online]. Available: https://doi.org/10.1049/iet-rpg.2016.0076
[2] D. O. Akinyele and R. K. Rayudu, “Review of energy storage technologies for sustainable power networks,” Sustainable Energy Technologies and Assessments, vol. 8, pp. 74–91, 2014. [Online]. Available: https://doi.org/10.1016/j.seta.2014.07.004
[3] S. Gayathri Nair and N. Senroy, “Power smoothening using multi terminal dc based dfig connection and flywheel energy storage system,” in 2016 IEEE 6th International Conference on Power Systems (ICPS), 2016, pp. 1–6. [Online]. Available: https://doi.org/10.1109/ICPES.2016.7584134
[4] J. A. Guacaneme, D. Velasco, and C. A. L. Trujillo, “Revisión de las características de sistemas de almacenamiento de energía para aplicaciones en micro redes,” Información tecnológica, vol. 25, pp. 175–188, 00 2014. [Online]. Available: http://dx.doi.org/10.4067/S0718-07642014000200020
[5] D. R. Aitchison, M. Cirrincione, and N. Leijtens, “Design development of a flywheel energy storage system for isolated pacific island communities,” in 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2016, pp. 1628–1633. [Online]. Available: https://doi.org/10.1109/AIM.2016.7577003
[6] J. Itoh, T. Masuda, D. Sato, T. Nagano, T. Suzuki, and N. Yamada, “Development of magnetic assist system in flywheel energy storage system for power load-leveling,” in 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), 2016, pp. 198–203. [Online]. Available: https://doi.org/10.1109/ICRERA.2016.7884537
[7] X. Zhang and J. Yang, “A robust flywheel energy storage system discharge strategy for wide speed range operation,” IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 7862–7873, 2017. [Online]. Available: https://doi.org/10.1109/TIE.2017.2694348
[8] F. Franco Hernández and H. Valdés Carrillo, Minería artesanal del oro de aluvión en Mocoa, Putumayo, Amazonia colombiana. Universidad Nacional de Colombia, 2005. [Online]. Available: https://bit.ly/2zTe5uL
[9] G. V. Deshpande and S. S. Sankeshwari, “Speed control of induction motors using hybrid pi plus fuzzy controller,” International Journal of Advances in Engineering & Technology, IJAET, vol. 6, no. 5, pp. 2253–2261, 2013. [Online]. Available: https://bit.ly/3dYCspA
[10] L. G. González Morales, “Mejora de la eficiencia y de las prestaciones dinámicas en procesadores electrónicos de potencia para pequeños aerogeneradores sincrónicos operando en régimen de velocidad variable,” Ph.D. dissertation, 2011. [Online]. Available: https://bit.ly/2Tqfksm
[11] F. A. Bardemaker, “Modulação vetorial aplicada a retificadores trifásicos PWM unidirecionais,” Ph.D. dissertation, 2006. [Online]. Available: https://bit.ly/3e5gsta
[12] A. S. de Morais, F. Lessa Tofoli, and I. Barbi, “Modeling, digital control, and implementation of a three-phase four-wire power converter used as a power redistribution device,” IEEE Transactions on Industrial Informatics, vol. 12, no. 3, pp. 1035–1042, 2016. [Online]. Available: https://doi.org/10.1109/TII.2016.2544248
[13] S. M. de Pancorbo, G. Ugalde, J. Poza, and A. Egea, “Comparative study between induction motor and synchronous reluctance motor for electrical railway traction applications,” in 2015 5th International Electric Drives Production Conference (EDPC), 2015, pp. 1–5. [Online]. Available: https://doi.org/10.1109/EDPC.2015.7323219
[14] M. Bhardwaj, Sensored Field Oriented Control of 3-Phase Permanent Magnet Synchronous Motors. Texas Instruments, 2013. [Online]. Available: https://bit.ly/3gahvKc
[15] S. Talebi Rafsanjan, “Advanced high-speed flywheel energy storage systems for pulsed power application.” Ph.D. dissertation, 2008. [Online]. Available: https://bit.ly/3cPPO7j