Number of subcarrier filter coefficients in GFDM system: effect on performance

Main Article Content

Randy Verdecia Peña http://orcid.org/0000-0003-4798-2681
Humberto Millán Vega http://orcid.org/0000-0001-9421-7494

Abstract

Generalized Frequency Division Multiplexing (GFDM) is a non-orthogonal multicarrier transmission scheme proposed for fifth (5G) and future generation wireless networks. Due to its attractive properties, it has been recently discussed as a candidate waveform for the future wireless communication systems. GFDM is introduced as a generalized form of the widely used Orthogonal Frequency Division Multiplexing (OFDM) modulation scheme and it uses only one cyclic prefix (CP) for a group of symbols. The main focus of this work is to present like impact on the system performance the coefficient quantity of the subcarrier filter. A simple method for the computation of the coefficients of the prototype filter is employed. Besides, it is presented a structure for the GFDM by taking advantage of the arrangement in the modulation matrix. We evaluated the Bit Error Rate (BER) using the receiver models presented in this work. The results showed that the BER is affected according to the coefficients quantity of the prototype filter. Based on the obtained results, the coefficients quantity has a relation with the number of time slots of the GFDM system.
Abstract 291 | PDF (Español (España)) Downloads 292 PDF Downloads 63 HTML (Español (España)) Downloads 44 HTML Downloads 37 EPUB (Español (España)) Downloads 7 XML (Español (España)) Downloads 0

References

[1] N. Michailow, M. Matthé, I. S. Gaspar, A. N. Caldevilla, L. L. Mendes, A. Festag, and G. Fettweis, “Generalized frequency division multiplexing for 5th generation cellular networks,” IEEE Transactions on Communications, vol. 62, no. 9, pp. 3045–3061, Sep. 2014. [Online]. Available: https://doi.org/10.1109/TCOMM.2014.2345566
[2] E. Öztürk, E. Basar, and H. A. Çirpan, “Generalized frequency division multiplexing with flexible index modulation,” IEEE Access, vol. 5, pp. 24 727–24 746, 2017. [Online]. Available: https://doi.org/10.1109/ACCESS.2017.2768401
[3] G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. T. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5gnow: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Communications Magazine, vol. 52, no. 2, pp. 97–105, February 2014. [Online]. Available: https://doi.org/10.1109/MCOM.2014.6736749
[4] L. Sendrei and S. Marchevský, “On the performance of gfdm systems undergoing nonlinear amplification,” Acta Electrotechnica et Informatica, vol. 15, no. 1, pp. 9–14, 2015. [Online]. Available: http://doi.org/10.15546/aeei-2015-0002
[5] S. K. Bandari, V. M. Vakamulla, and A. Drosopoulos, “Gfdm/oqam performance analysis under nakagami fading channels,” Physical Communication, vol. 26, pp. 162–169, 2018. [Online]. Available: https://doi.org/10.1016/j.phycom.2017.12.008
[6] F. Schaich and T. Wild, “Waveform contenders for 5g – ofdm vs. fbmc vs. ufmc,” in 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), May 2014, pp. 457–460. [Online]. Available: https://doi.org/10.1109/ISCCSP.2014.6877912
[7] A. N. Ibrahim and M. F. L. Abdullah, “The potential of fbmc over ofdm for the future 5g mobile communication technology,” AIP Conference Proceedings, vol. 1883, no. 1, p. 020001, 2017. [Online]. Available: https://doi.org/10.1063/1.5002019
[8] E. Öztürk, E. Basar, and H. A. Çirpan, “Spatial modulation gfdm: A low complexity mimo-gfdm system for 5g wireless networks,” in 2016 IEEE International Black Sea Conference on Communications and Networking (BlackSea-Com), 2016, pp. 1–5. [Online]. Available: https://doi.org/10.1109/BlackSeaCom.2016.7901544
[9] A. Farhang, N. Marchetti, and L. E. Doyle, “Low-complexity modem design for gfdm,” IEEE Transactions on Signal Processing, vol. 64, no. 6, pp. 1507–1518, March 2016. [Online]. Available: https://doi.org/10.1109/TSP.2015.2502546
[10] A. M. Tonello and M. Girotto, “Cyclic block fmt modulation for broadband power line Verdecia Peña y Millán Vega / Número de coeficientes del filtro de las subportadoras en el Sistema GFDM: efecto en el desempeño 61 communications,” in 2013 IEEE 17th International Symposium on Power Line Communications and Its Applications, March 2013, pp. 247–251. [Online]. Available: https://doi.org/10.1109/ISPLC.2013.6525858
[11] G. Fettweis, M. Krondorf, and S. Bittner, “Gfdm - generalized frequency division multiplexing,” in VTC Spring 2009 - IEEE 69th Vehicular Technology Conference, April 2009, pp. 1–4. [Online]. Available: https://doi.org/10.1109/VETECS.2009.5073571
[12] H. Lin and P. Siohan, “An advanced multicarrier modulation for future radio systems,” in 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), May 2014, pp. 8097–8101. [Online]. Available: https://doi.org/10.1109/ICASSP.2014.6855178
[13] M. Renfors, J. Yli-Kaakinen, and F. J. Harris, “Analysis and design of efficient and flexible fastconvolution based multirate filter banks,” IEEE Transactions on Signal Processing, vol. 62, no. 15, pp. 3768–3783, Aug 2014. [Online]. Available: https://doi.org/10.1109/TSP.2014.2330331
[14] A. Farhang, N. Marchetti, L. E. Doyle, and B. Farhang-Boroujeny, “Filter bank multicarrier for massive mimo,” in 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Sep. 2014, pp. 1–7. [Online]. Available: https://doi.org/10.1109/VTCFall.2014.6965986
[15] R. Datta and G. Fettweis, “Improved aclr by cancellation carrier insertion in gfdm based cognitive radios,” in 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), May 2014, pp. 1–5. [Online]. Available: https://doi.org/10.1109/VTCSpring.2014.7022943
[16] B. Farhang-Boroujeny and H. Moradi, “Derivation of gfdm based on ofdm principles,” in 2015 IEEE International Conference on Communications (ICC), June 2015, pp. 2680–2685. [Online]. Available: https://doi.org/10.1109/ICC.2015.7248730
[17] R. Verdecia Peña, R. Pereira David, and R. Sampaio-Neto, “Detecção de sinais e estimação de canal em sistemas gfdm,” in XXXVII Simpósio Brasileiro de Telecomunicações e Processamento de Sinal SBrT2019, At: Petrópolis, RJ, 2019. [Online]. Available: https://bit.ly/34VPal7
[18] R. Verdecia Peña, “Análise espectral, detecção de sinais e estimação de canal em sistemas GFDM,” Master’s thesis, 2019. [Online]. Available: https://bit.ly/34LM96N
[19] J. P. Mayoral Arteaga, “Detecção de sinais em sistemas comtransmissão gfdm,” Master’s thesis, 2017. [Online]. Available: https://bit.ly/2DEbbc2
[20] J. P. Mayoral Arteaga, R. Pereira David, and R. Sampaio Neto, “Simultaneous detection and parallel interference cancellation in GFDM for 5G,” in XXXV Simposio brasileiro de telecomunicacções e processamento de sinais - SBRT2017, 3-6 de setembro de 2017, São Pedro, SP, 2017, pp. 220–224. [Online]. Available: https://bit.ly/387wqRF
[21] R. Verdecia Peña, “Análisis del desempeño de los esquemas de modulación BPSK y QPSK para diferentes condiciones de canales en sistema GFDM,” MASKAY, vol. 8, no. 1, pp. 7–112, 2018. [Online]. Available: http://dx.doi.org/10.24133/maskay.v8i1.506
[22] ——, “Desempeño de los métodos de detección de señales con modulación QPSK en sistema GFDM para 5G.” Revista Cubana de Ciencias Informáticas, vol. 12, pp. 104–120, 09 2018. [Online]. Available: https://bit.ly/33GWbo9
[23] N. Michailow, R. Datta, S. Krone, M. Lentmaier, and G. Fettweis, “Generalized frequency division multiplexing: A flexible multi-carrier modulation scheme for 5th generation cellular networks,” 2012. [Online]. Available: https://bit.ly/2rQep9B
[24] N. Michailow, S. Krone, M. Lentmaier, and G. Fettweis, “Bit error rate performance of generalized frequency division multiplexing,” in 2012 IEEE Vehicular Technology Conference (VTC Fall), Sep. 2012, pp. 1–5. [Online]. Available: https://doi.org/10.1109/VTCFall.2012.6399305
[25] S. Mirabbasi and K. Martin, “Overlapped complex-modulated transmultiplexer filters with simplified design and superior stopbands,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, no. 8, pp. 456–469, Aug 2003. [Online]. Available: https://doi.org/10.1109/TCSII.2003.813592
[26] K. W. Martin, “Small side-lobe filter design for multitone data-communication applications,” IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, vol. 45, no. 8, pp. 1155–1161, Aug 1998.