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Abstract Resumen
This research explains the methodology for the cre-
ation of a diagnostic system applied to the detection
of mechanical failures in vehicles with gasoline en-
gines through artificial neural networks. The system
is based on the study of the intake phase of the
Otto cycle, which is recorded through the physical
implementation of a MAP sensor (Manifold Absolute
Pressure). A strict sampling protocol and its corre-
sponding statistical analysis are applied. Statistical
values of the MAP sensor signal such as, area, energy,
entropy, maximum, mean, minimum, power and RMS,
were selected according to the greater amount of in-
formation and significant difference. The data were
obtained with the application of 3 statistical methods
(ANOVA, correlation matrix and Random Forest) to
create a database that allows the training of a neural
network feed-forward backpropagation, with which
a classification error of 1.89 e−11 was achieved. The
validation of the diagnostic system was carried out by
the generating supervised failures in different engines
with provoked ignition.

En la presente investigación se explica la metodología
para la creación de un sistema de diagnóstico apli-
cado a la detección de fallas mecánicas en vehículos
con motores a gasolina mediante redes neuronales
artificiales, el sistema se basa en el estudio de la fase
de admisión del ciclo Otto, el cual es registrado a
través de la implementación física de un sensor MAP
(Manifold Absolute Pressure). Se emplea un estricto
protocolo de muestreo y su correspondiente análisis
estadístico. Los valores estadísticos de la señal del
sensor MAP: área, energía, entropía, máximo, media,
mínimo, potencia y RMS se seleccionaron en función
al mayor aporte de información y diferencia significa-
tiva. Los datos se obtuvieron con la aplicación de 3
métodos estadísticos (ANOVA, matriz de correlación
y Random Forest) para tener una base de datos que
permita el entrenamiento de una red neuronal feed-
forward backpropagation, con la cual se obtiene un
error de clasificación de 1.89e−11. La validación del
sistema de diagnóstico se llevó a cabo mediante la
provocación de fallas supervisadas en diferentes mo-
tores de encendido provocado.
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1. Introduction

Nowadays, operators and technicians in the area of au-
tomotive transportation use rudimentary diagrams for
diagnosing and repairing engines with provoked igni-
tion (EPI), which implies subjectivity in the diagnosis,
longer periods for fault detection, lack of assertiveness
and, as a consequence, high maintenance costs.

Therefore, it becomes necessary to apply new
methodologies and specialized techniques for quicker
diagnosis, thus optimizing resources for fault detection
in engines of gasoline powered vehicles [1].

Due to the complexity for analyzing and inter-
preting the operational parameters of the EPI, it is
necessary to use neural networks and computational
mathematics for an efficient diagnosis of mechanical
failures in Otto cycle engines. Howlett [2] shows that
the EPI can be monitored for failure diagnosis or con-
trol, by analyzing the spark plug signal using artificial
neural networks.

Similarly, Antory [3] suggests that it is possible to
precisely determine different types of common failures
in automobile diesel engines, by means of a diagnosis
model that uses a variation of autoassociative neural
networks (AANN).

Other neural networks have also been applied for
fault diagnosis in the automotive area. Chen and
Zhao [4] use radial basis functions neural networks
(RBFNN) to diagnose failures of the engine fuel sys-
tem.

Parallel strategies can be applied to train an artifi-
cial neural network (ANN), e.g. training of a modified
Elman network for diagnosing engine failures. This
recurrent network can be very effective and achieve
a good diagnosing result, due to its dynamic input-
output relationship [5]. Similarly, Lian et al. [6] present
a method based in fuzzy logic and neural networks, for
diagnosing faults in engines with provoked ignition.

Shah et al. [7] propose a system for failure recog-
nition of internal combustion engines, applying the
discrete wavelet transform (DWT) and RBF neural
networks. Cay [8] developed an ANN model based on
the backpropagation algorithm, for predicting specific
brake fuel consumption, effective power and exhaust
temperature of an EPI. Cay et al. [9] presented an
ANN model for predicting the performance and the
exhaust emissions of an EPI working with methanol
and gasoline.

There have been diverse applications of neural net-
works in the calibration of spark ignited engines. R. F.
Turkson et al. [10] have stated that ANN are capable
of identifying the system for rapid prototyping, virtual
detection, emerging control strategies and on board
diagnostic (OBD) applications.

Another important application of ANN with kinetic
models as activation functions of units in the hidden
layer, was the study of the polyurethane degradation of
an automotive intake manifold with isothermal treat-
ment [11].

The proposed system for diagnosing engines with
provoked ignition can detect faults that are not de-
tected by the engine control unit (ECU). The system
uses the signals from the manifold absolute pressure
(MAP) and camshaft positioning (CMP) sensors, since
they can enable minimizing the diagnosis time, in or-
der to avoid employing intrusive techniques in the EPI
such as using manometers for measuring the compres-
sion of the cylinders and the fuel pressure, vacuum
meter, scanner, among others. The purpose of the
aforementioned techniques is determining mechanical
failure.

2. Materials and methods

This section discusses subjects such as the selection of
the minimally invasive experimental unit and instru-
mentation, conditions for samples collection, method-
ology for data acquisition, obtaining the matrix of
attributes, reduction of attributes and selection for
ANN training, and Matlab algorithm for implementing
the neural network.

2.1. Selection of the minimally invasive exper-
imental unit and instrumentation

The main purpose is to avoid disassembling elements
and pieces of the engine when diagnosing mechani-
cal failures, for which a MAP sensor is installed in
a vacuum outlet of the intake manifold to measure
engine depression. The sensor will be placed after the
acceleration butterfly, to prevent the connection from
affecting the engine operation.

The identification of each cylinder is carried out
using the registered signal from the CMP sensor. Fig-
ure 1 shows the experimental unit tested in the engine
of a Hyundai Sonata 2.0 DOHC, a personal computer
(PC), a tablet, the data acquisition tool NI DAQ-6009
and the interface of an automotive scanner. On the
other hand, Figure 2 shows the connection of the MAP
sensor, the vacuum outlet and the Ni DAQ-6009.

Figure 1. Engine instrumentation.
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Figure 2. Connection of the MAP sensor.

2.2. Conditions for samples collection

The software LabView 2017 and the data acquisition
card NI DAQ-6009 were used for collecting the sam-
ples. The samples are taken with the engine idle, at
approximately 850 rpm, for a temperature range of the
MAP sensor between 92 ◦C y 97 ◦C and 40 % load;
these conditions were confirmed using the scanner.

In a preliminary experimental study it was found
that the signal of the MAP sensor exhibits higher
frequency peaks. As a consequence, each signal was
sampled at a frequency of 10 KHz during a period of
5 seconds; such frequency exceeds Nyquist criterion
(1.416 KHz).

2.3. Methodology for data acquisition

Figure 3 presents the physical elements required for
sampling the signals.

Figure 3. Elements required for collecting the samples.

The flowchart shown in Figure 4 represents the
procedure for obtaining the data from the signals of
the MAP and CMP sensors, with the engine operating
correctly (Figure 4(a)) or under a supervised failure
(Figure 4(b)). Such procedure starts with the revision
of the engine to determine its condition.

Then, the connection of the sensors is verified and
the signal is recorded with the software LabView and
saved to an Excel file.

Table 1 summarizes a total of 18 failures that can
occur in the experimental unit, each with its corre-
sponding identification code. The optimal operation
of the engine is also included as a condition.

Figure 4. Flowchart of the procedure for data acquisition:
(a) engine operating correctly, (b) engine with a failure

Table 1. Operational conditions of the experimental unit

N.◦ Type of mechanical Identification
condition Code

1 Optimal operation 100
2 Failure in fuel injector 1 200
3 Failure in fuel injector 2 300
4 Failure in fuel injector 3 400
5 Failure in fuel injector 4 500
6 Failure in spark plug 1 600
7 Failure in spark plug 2 700
8 Failure in spark plug 3 800
9 Failure in spark plug 4 900
10 Failure in coil 1-4 1000
11 Failure in coil 2-3 1100
12 Low fuel pressure 1200
13 High fuel pressure 1300

14 Intake (+1) and 1400exhaust (0) trees

15 Intake (-1) and 1500exhaust (0) trees

16 Intake (0) ands 1600exhaust (+1) tree

17 Intake (0) and 1700exhaust (-1) trees

18 Intake (+1) and 1800exhaust (+1) trees

19
Intake (-1) and

1900exhaust (-1) trees
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2.4. Obtaining the matrix of attributes

Once the signals have been acquired, an algorithm was
coded in Matlab for reading and obtaining the ma-
trix with general attributes, such as geometric mean,
maximum, minimum, covariance, variance, standard
deviation, mode, kurtosis factor, coefficient of asym-
metry, energy, power, area under the curve, entropy,

coefficient of variation, range, root mean square and
crest factor.

Figure 5 illustrates a complete cycle of the engine
(720◦ ±180◦), with the tuning of the early intake open-
ing (EIO) and late intake closing (LIC) distribution
for each cylinder. Figure 6 shows windows of the MAP
sensor signal for each cylinder; these signals are char-
acterized.

Figure 5. Signals of the MAP and CMP sensors.

Figure 6. Windows of the MAP sensor signal for each
cylinder.

2.5. Reduction of attributes

For selecting and reducing the number of attributes,
the general matrix is analyzed using three statistical
methods: analysis of variance (ANOVA), correlation
matrix and Random Forest.

The application of a single factor ANOVA to all 18
attributes, helps to determine the best attributes that
will be present in the general matrix. Since values of
R2 close to 100 % indicate a correct fit of the model to
the data, greater values of this parameter are used to
determine the variation among the attributes. In addi-
tion, values of p close to 0 determine if the attributes
are statistically significant [12].

With respect to the correlation matrix, attributes
with coefficients close to –1 o 1 were discarded, since
such values indicate strong relationship between the
variables, either negative (–1) or positive (1). In fact,
attributes with coefficients close to zero were selected,
because there does not exist strong correlation between
the variables [13].

Regarding the Random Forest method, it was used
to estimate the importance of the attributes by means
of techniques such as Curvature test, Standard CART
and Interaction test. Then, Pareto analysis was ap-
plied to select the attributes with the higher priority,
considering only the first 95 % of the accumulated
distribution [14].

Table 2 contains the results of the applied statis-
tical methods, i.e. ANOVA, correlation matrix and
Random Forest.

The general matrix contains the 18 attributes cor-
responding to the 19 conditions which were induced
in the experimental unit.

2.6. Selection of attributes for training the
ANN

The attributes selected for training the neural network
were the most often repeated, which were determined
by means of a coincidence analysis carried out to the
results of Table 2. The selected attributes are shown
in Table 3, thus confirming the effectiveness of each
method.
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Table 2. General matrix of attributes

Statiscal Most important attributes according to the statistical methodsmethods
Analyzed Coeff. of variation Area RMS Mean Energy Entropy Mínimum Median Power

Correlation coefficients Range/value Range/value Range/value Range/value Range/value Range/value Range/value Range/value Range/value
342 ≤ ± 0.1 / 222 ≤ ± 0.1 / 212 ≤ ± 0.1 / 216 ≤ ± 0.1 / 212 ≤ ± 0.1 / 220 ≤ ± 0.1 / 214 ≤ ± 0.1 / 204 ≤ ± 0.1 / 214 ≤ ± 0.1 / 214

ANOVA Median Area Mean Minimum Maximum RMS Power Energy Entropy
R2=100 % R2=99,4 % R2=99,39 % R2=99,39 % R2=99,38 % R2=99,38 % R2=99,26 % R2=99,25 % R2=99,25 % R2=99,16 %
p=0,00 p=0,00 p=0,00 p=0,00 p=0,00 p=0,00 p=0,00 p=0,00 p=0,00 p=0,00

Forest Curvature Energy RMS Entropy Maximum Area Mean Power Minimum Crest factor
% of Importance % Imp. % Imp. % Imp. % Imp. % Imp. % Imp. % Imp. % Imp. % Imp.

(0 a 2.5) 2,4 2,3 2,25 2,2 2,18 2,15 2 1,9 1,6
Forest Standard Cart Energy Entropy RMS Mean Maximum Area Power Minimum Coeff. of variation

% of Importance % Imp. % Imp. % Imp. % Imp. % Imp. % Imp. % Imp. % Imp. % Imp.
(0 a 3) 2,85 2,7 2,65 2,64 2,63 2,6 2,55 2,46 2,4

Forest Robust Standar Deviation Variance Energy Area RMS Mean Power Maximum Minimum
% of Importance % Imp. % Imp. % Imp. % Imp. % Imp. % Imp. % Imp. % Imp. % Imp.

(0 a 12) 10,15 10,13 10,11 10,09 9,5 9,1 8,7 8,5 8,4

Table 3. Attributes used to train the ANN

Statistical Number of
atributes repetitions
Area (v2) 5
Energy (J) 5
Entropy (J) 4

Maximum (V) 4
Mean (V) 5

Minimum (V) 5
Power (mW) 5
RMS (V) 5

2.7. Matlab algorithm for implementing the
neural network

Different network configurations were created and
trained using the Matlab neural network toolbox, in
the search for the network that exhibits good general-
ization ability.

Figure 7 shows the flow chart of the procedure for
creating an ANN.

The procedure starts reading the matrix of inputs
and target data for the ANN. Then, for better train-
ing performance, the data is normalized using the
corresponding maximum values. At last, the ANN is
created.

Figure 8 illustrates the structure of the feed-forward
backpropagation ANN.

Once created, the neural network is trained consid-
ering the following training parameters:

1. Training algorithm

2. Number of epochs

3. Maximum error

Then, the classification performance of the trained
neural network is tested. Is the classification error is
greater than 5 %, the parameters are varied and the
training is repeated.

Figure 7. Flowchart of the procedure for ANN creation

Figure 9 shows the classification error of different
training configurations, which were carried out search-
ing for the neural network with the smallest possible
error.
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The neural network trained with the function train-
scg had an error of 1.89e−11 %.

Figure 8. Structure of the neural network.

Figure 9. Errors for different training algorithms.

Figure 10 shows the Pearson correlation coefficient
R of the created neural network, which is available in
the Matlab string variable red.trainFcn = ’trainscg’.

The lines represent target values and the black cir-
cles the corresponding values estimated by the ANN.
The neural network exhibits a good performance, since
R=1 for training, validation and testing, which in-
dicates a strong linear relationship between the real
conditions of the EPI and the results given by the
neural network [15].

On the other hand, Figure 11 shows a comparison
between the output of the neural network and the
target value, for the 19 mechanical conditions under
consideration.

Figure 10. Correlation between the targets and the values
estimated by the neural network.

Figure 11. The Neural network trained with function
«trainscg» achieved a percentage error of 1.89e−11.

3. Results and discussion

Tests under different operating conditions were con-
ducted to confirm that the proposed diagnosing system
works correctly.
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Specifically, two failure conditions were considered:
injector 1 (200) and coil 2-3 (1100).

Figure 12 shows the results for a failure condition in
injector 1. The average error between the target values
and the outputs of the neural network was 0.0127.

Figure 12. Results for a failure condition in injector 1.

On the other hand, Figure 13 shows the results for
the failure condition in coil 2-3. The average error be-
tween the target values and the outputs of the neural
network was 0.0060.

Figure 13. Results for a failure condition in the ignition
coil 2-3.

Results show that the differences between the tar-
get values and the outputs of the ANN were very close
to zero. Therefore, the proposed diagnosing system is
capable of detecting a real failure condition.

In fact, Figure 14 shows that Tukey statistical
method with a confidence interval of 95 %, determines
that there is not significant statistical difference be-
tween the real condition of the engine and the responses
of the ANN, since their means are equivalent.

In addition, the intervals shown in Figure 15 indi-
cate that there is no difference between the average
values of the tests in the different operating conditions
of the engine.

Figure 14. Difference between the means of the real data
vs. ANN response.

Figure 15. Intervals of real data vs. ANN response.

Similarly, Figure 16 confirms that there is rela-
tionship between the expected and neural network
responses, since they share the same group letter (A)
and the p-value is 0.965. This results in a confidence
value of 96.5 %, which is very acceptable in the di-
agnosis of internal combustion engines with provoked
ignition.

Figure 16. Results of the analysis of variance and com-
parisons in Tukey pairs.
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4. Conclusions

The developed neural network model had a classifi-
cation error of 1.89e-11 with the training function
trainscg, which yielded an accurate identification of
the different types of mechanical conditions of the EPI.
Therefore, such model constitutes a completely viable
alternative to be integrated in a diagnosing system,
due to the high computational speed offered by the
artificial neural networks.

By means of a single factor analysis of variance, a
p-value=0,965 was obtained, demonstrating that the
targets and the ANN responses are equivalent since
this p-value indicates that there is not a significant
statistical difference between them. This work showed
that feed-forward backpropagation neural networks are
suitable for detecting mechanical failure conditions in
engines with provoked ignition; in addition, the applied
diagnosing technique has the advantage of avoiding
disassembling elements and pieces of the engine, thus
being a reliable and highly precise minimally invasive
technique.

Statistical methods such as analysis of variance
(ANOVA), correlation matrix and Random Forest,
were applied to determine the best attributes for train-
ing the ANN. Then, the results were grouped in a ge-
neral matrix, to help in the selection of the attributes
with greater coincidence and importance for differenti-
ating patterns of mechanical failures.
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