Simulación fotovoltaica considerando parámetros de integración en edificaciones

Main Article Content

Ismael Fernando Izquierdo Torres
Mario G. Pacheco-Portilla http://orcid.org/0000-0003-4107-4594
Luis G. Gonzalez-Morales http://orcid.org/0000-0001-9992-3494
Esteban F. Zalamea-León http://orcid.org/0000-0001-5551-5026

Keywords

Energías renovables, Monocristalino, SAM, Simulación fotovoltaica

Resumen

Esta investigación calibra y valida un modelo de sistemas fotovoltaicos monocristalinos en la herramienta computacional System Advisor Model (SAM) para simulación de generación eléctrica, considerando las características meteorológicas en Cuenca (Ecuador), ciudad en altura próxima a la línea ecuatorial. Se obtiene el rendimiento eléctrico al desplegarse paneles fotovoltaicos de características específicas, con inclinaciones que responden a techumbres típicas locales y distintas orientaciones. Se calcula la eficiencia con mediciones in situ durante un período de 18 días, para que, con datos meteorológicos se calibre un archivo climático para el año 2016. Se estiman rendimientos anuales acorde a inclinación y orientación, y a características técnicas de los fotovoltaicos. Se detectan pérdidas por acumulación de suciedad e incremento de temperatura de las placas. Se valida el modelo mediante una regresión lineal, al comparar los valores simulados con los datos obtenidos de mediciones in situ de un panel en posición horizontal. Los resultados indican una pérdida promedio de eficiencia de 2,77 % por condiciones de suciedad y de hasta el 30 % por incremento de temperatura. La validación del modelo mostró un coeficiente de determinación R2 = 0,996 y un RMSE normalizado de 8,16 %. Se concluye además que, por la latitud particular del sitio en estudio, a diferencia de la mayor parte del planeta, la disposición de paneles fotovoltaicos en cualquier orientación considerando pendientes bajas, no reduce significativamente el rendimiento en la generación de energía eléctrica anual.
Abstract 456 | PDF Downloads 974 PDF (English) Downloads 176 HTML Downloads 336 HTML (English) Downloads 64

Citas

[1] Z. A. Elum and A. S. Momodu, “Climate change mitigation and renewable energy for sustainable development in Nigeria: A discourse approach,” Renewable and Sustainable Energy Reviews, vol. 76, pp. 72–80, 2017. [Online]. Available: https://doi.org/10.1016/j.rser.2017.03.040
[2] A. Grubler, X. Bai, T. Buettner, S. Dhakal, D. J. Fisk, T. Ichinose, J. E. Keirstead, G. Sammmer, D. Satterthwaite, N. B. Schulz et al., Global Energy Assessment - Toward a Sustainable Future. International Institute for Applied Systems Analysis and Cambridge University., 2012, ch. Urban energy systems, pp. 1307–1400. [Online]. Available: https://goo.gl/rVdsU6
[3] A. Barragán-Escandón, J. Terrados-Cepeda, and E. Zalamea-León, “The role of renewable energy in the promotion of circular urban metabolism,” Sustainability, vol. 9, no. 12, 2017. [Online]. Available: https://doi.org/10.3390/su9122341
[4] A. K. Shukla, K. Sudhakar, P. Baredar, and R. Mamat, “Solar PV and BIPV system: Barrier, challenges and policy recommendation in India,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 3314–3322, 2018. [Online]. Available: https://doi.org/10.1016/j.rser.2017.10.013
[5] J. Byrne, J. Taminiau, J. Seo, J. Lee, and S. Shin, “Are solar cities feasible? a review of current research,” International Journal of Urban Sciences, vol. 21,
no. 3, pp. 239–256, 2017. [Online]. Available: https://doi.org/10.1080/12265934.2017.1331750
[6] M. Nadim, M. R. H. Rashed, A. Muhury, and S. M. Mominuzzaman, “Estimation of optimum tilt angle for PV cell: A study in perspective of Bangladesh,” in 2016 9th International Conference on Electrical and Computer Engineering (ICECE), Dec 2016, pp. 271–274. [Online]. Available: https://doi.org/10.1109/ICECE.2016.7853908
[7] P. Fitriaty and Z. Shen, “Predicting energy generation from residential building attached Photovoltaic Cells in a tropical area using 3D modeling analysis,” Journal of Cleaner Production, vol. 195, pp. 1422–1436, 2018. [Online]. Available: https://doi.org/10.1016/j.jclepro.2018.02.133
[8] B. Trewin, State of the tropics. James Cook University, 2014, ch. The climates of the Tropics, and how they are changing, pp. 39–51. [Online]. Available: https://goo.gl/hH8pv1
[9] A. Bykerk-Kauffman. (2018) Seasons and why the equator is warmer than the poles. Pedagogy in Action the SERC portal for Educators. Science Education Resource Center. [Online]. Available: https://goo.gl/vsDCFB
[10] IRENA, Global Atlas for Renewable Energy: A World of Renewables. International Renewable Energy Agency, 2015. [Online]. Available: https://goo.gl/adpQop
[11] M. M. Riyahi Alam, A. Behfar, and R. Shahmoradi, “Potential application of solar power systems for residential buildings in high-density urban pattern: The case of the Eixample district, city of the Barcelona, in Spain,” Recent Researches in Environmental and Geological Sciences, pp. 342–347, 2012. [Online]. Available: https://goo.gl/t6dSQZ
[12] IRENA, Renewable Energy in Cities. International Renewable Energy Agency, Abu Dhabi„ 2016. [Online]. Available: https://goo.gl/EN2Ufq
[13] T. Razykov, C. Ferekides, D. Morel, E. Stefanakos, H. Ullal, and H. Upadhyaya, “Solar photovoltaic electricity: Current status and future prospects,” Solar Energy, vol. 85, no. 8, pp. 1580–1608, 2011. [Online]. Available: https://doi.org/10.1016/j.solener.2010.12.002
[14] A. Barragán-Escandón, J. Terrados-Cepeda, E. Zalamea-León, and P. Arias-Reyes, “Electricity production using renewable resources in urban centres,” Proceedings of the Institution of Civil Engineers - Energy, vol. 171, no. 1, pp. 12–25, 2018. [Online]. Available: https://doi.org/10.1680/jener.17.00003
[15] A. Curreli, G. Serra-Coch, A. Isalgue, I. Crespo, and H. Coch, “Solar energy as a form giver for future cities,” Energies, vol. 9, no. 7, 2016. [Online].
Available: https://doi.org/10.3390/en9070544
[16] P. Chen, R. Salcedo, Q. Zhu, F. de Leon, D. Czarkowski, Z. Jiang, V. Spitsa, Z. Zabar, and R. E. Uosef, “Analysis of voltage profile problems due to the penetration of distributed generation in low-voltage secondary distribution networks,” IEEE Transactions on Power Delivery, vol. 27, no. 4, pp. 2020–2028, Oct 2012. [Online]. Available: https://doi.org/10.1109/TPWRD.2012.2209684
[17] M. Wall, M. C. M. Probst, C. Roecker, M.-C. Dubois, M. Horvat, O. B. Jørgensen, and K. Kappel, “Achieving solar energy in architecture-IEA SHC Task 41,” Energy Procedia, vol. 30, pp. 1250–1260, 2012. [Online]. Available: https://doi.org/10.1016/j.egypro.2012.11.138
[18] K. Farkas, F. Frontini, L. Maturi, A. Scognamiglio, M. C. Munari Probst, and C. Roecker, Designing photovoltaic systems for architectural integration. Criteria and guidelines for product and system developers, Solar Heating & Cooling Programme- International Energy Agency, 2013. [Online]. Available: https://goo.gl/fj36VW
[19] B. P. Jelle, “Building integrated photovoltaics: A concise description of the current state of the art and possible research pathways,” Energies, vol. 9, no. 1, 2016. [Online]. Available: https://doi.org/10.3390/en9010021
[20] M. C. Munari Probst, C. Roecker, F. Frontini, A. Scognamiglio, K. Farkas, L. Maturi, and I. Zanetti, “Solar energy systems in architecture - integration criteria and guidelines,” Infoscience EPFL scientific publications, p. 214, 2013. [Online]. Available: https://goo.gl/4Rx7e5
[21] Eletrek. (2018) Tesla solar roof. [Online]. Available: https://goo.gl/Bnyduv
[22] A. Gharakhani Siraki and P. Pillay, “Comparison of PV system design software packages for urban applications,” in Word Energy Congress Montreal, 2010. [Online]. Available: https://goo.gl/Vhuhyg
[23] G. Cáceres, S. Nasirov, H. Zhang, and G. Araya-Letelier, “Residential solar PV planning in Santiago, Chile: Incorporating the PM10 parameter,” Sustainability, vol. 7, no. 1, pp. 722–440, 2015. [Online]. Available: https://doi.org/10.3390/su7010422
[24] S. C. S. Costa, A. S. A. C. Diniz, and L. L. Kazmerski, “Dust and soiling issues and impacts relating to solar energy systems: Literature review update for 2012–2015,” Renewable and Sustainable Energy Reviews, vol. 63, pp. 33–61, 2016. [Online]. Available: https://doi.org/10.1016/j.rser.2016.04.059
[25] B. V. Chikate and Y. Sadawarte, “The factors affecting the performance of solar cell,” International Journal of Computer Applications (0975-8887), 2015. [Online]. Available: https://goo.gl/d7txov
[26] M. E. Meral and F. Dinçer, “A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems,” Renewable and Sustainable Energy Reviews, vol. 15, no. 5, pp. 2176–2184, 2011. [Online]. Available: https://doi.org/10.1016/j.rser.2011.01.010
[27] Y. Jia-Ying, D. Kun, T. Reindl, and A. G. Aberle, “Outdoor PV module performance under fluctuating irradiance conditions in tropical climates,” Energy Procedia, vol. 33, pp. 238–247, 2013. [Online]. Available: https://doi.org/10.1016/j.egypro.2013.05.064
[28] A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering. John Wiley & Sons, 2011. [Online]. Available: https://goo.gl/7D9UYk
[29] C. Hachem, A. Athienitis, and P. Fazio, “Parametric investigation of geometric form effects on solar potential of housing units,” Solar Energy, vol. 85, no. 9, pp. 1864–1877, 2011. [Online]. Available: https://doi.org/10.1016/j.solener.2011.04.027
[30] NREL. (2017) System Advisor Model (SAM). National Renewable Energy Laboratory. [Online]. Available: https://goo.gl/WTktPn
[31] J. Freeman, J. Whitmore, N. Blair, and A. P. Dobos, “Validation of multiple tools for flat plate photovoltaic modeling against measured data,” in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), June 2014, pp. 1932–1937. [Online]. Available: https://doi.org/10.1109/PVSC.2014.6925304
[32] I. F. Izquierdo Torres and M. G. Pacheco Portilla, Evaluación de la eficiencia de paneles solares como sistema de captación de energía para edificaciones del área urbana de Cuenca, E. Universidad de Cuenca, Ed. Tesis de grado, 2017. [Online]. Available: https://goo.gl/wSEZ1X
[33] CLIMATE-DATA. (2017) Clima Cuenca. climate-data.org. [Online]. Available: https: //goo.gl/SBnaa2
[34] J. Freeman, J. Whitmore, L. Kaffine, and A. P. Blair, Nate Dobos, “System Advisor Model: Flat plate photovoltaic performance modeling validation report,” National Renewable Energy Laboratory (NREL), Tech. Rep., 2013. [Online]. Available: https://goo.gl/47cQ1r
[35] E. Rudié, A. Thornton, N. Rajendra, and S. Kerrigan, “System Advisor Model performance modeling validation report: Analysis of 100 sites,” Locus Energy, National Renewable Energy Laboratory (NREL), Tech. Rep., 2014. [Online]. Available: https://goo.gl/zpfUZA
[36] D. F. Al Riza, S. Gilani, and M. Aris, “Measurement and simulation of standalone solar PV system for residential lighting in Malaysia,” Journal of Hydrocarbons Mines and Environmental Research, vol. 2, no. 1, pp. 6–12, 2011. [Online]. Available: https://goo.gl/G8shmj
[37] K. Kanyarusoke, J. Gryzagoridis, and G. Oliver, “Validation of TRNSYS modelling for a fixed slope photovoltaic panel,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 24, no. 6, pp. 4763–4772, 2016. [Online]. Available: https://www.doi.org/10.3906/elk-1502-38
[38] M. A. Meybodi, L. R. Santigosa, and A. C. Beath, “A study on the impact of time resolution in solar data on the performance modelling of CSP plants,” Renewable Energy, vol. 109, pp. 551–563, 2017. [Online]. Available: https://doi.org/10.1016/j.renene.2017.03.024
[39] V. Håvard Breisnes, “Modelling of photovoltaic modules with battery energy storage in Simulink/MATLAB: With in-situ measurement comparisons,” Master’s thesis, Norwegian University of Science and Technology, 2014. [Online]. Available: https://goo.gl/13bxEy
[40] F. Chenlo Romero, “Cálculo de la temperatura de operación de células solares en un panel fotovoltaico plano,” Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT). Madrid - España, Tech. Rep., 2002. [Online]. Available: https://goo.gl/SFrX4r
[41] M. Blumthaler, W. Ambach, and R. Ellinger, “Increase in solar UV radiation with altitude,” Journal of Photochemistry and Photobiology B: Biology, vol. 39, no. 2, pp. 130–134, 1997. [Online]. Available: https://doi.org/10.1016/S1011-1344(96)00018-8
[42] E. F. Zalamea-León and R. H. García-Alvarado, “Integración de captación activa y pasiva en viviendas unifamiliares de emprendimientos inmobiliarios,” Ambiente construido, vol. 18, no. 1, pp. 445–461, 2018. [Online]. Available: https://dx.doi.org/10.1590/s1678-86212018000100231
[43] E. Zalamea and R. García Alvarado, “Roof characteristics for integrated solar collection in dwellings of Real-Estate developments in Concepción, Chile,” Revista de la construcción, vol. 13, no. 3, pp. 36–44, 12 2014. [Online]. Available: https://dx.doi.org/10.4067/S0718-915X2014000300005