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Abstract Resumen
This research presents an explanation of the applied
methodology for the determination of the maximum
compression pressure of a reciprocating internal com-
bustion spark-ignition engine (SIE), which is based
on a study that begins with the characterization of
amper-age consumption curves of the starter motor.
A proto-col for data acquisition and subsequent sta-
tistical anal-ysis is applied. The statistical values of
the signal as energy, average, standard deviation, vari-
ance, kurtosis, asymmetry, maximum, minimum and
crest factor are selected in function of a greater con-
tribution of infor-mation for the characterization of
the experiment; these values generate databases that
are applied for the crea-tion and training of a recur-
rent artificial neural network (RANN) in which an
absolute error of less than 2% is obtained. In a first
instance, the test methodology is applied to an engine
assembled in a didactic work-bench, after which the
method is applied to engines in vehicles.

En la presente investigación se realiza la explicación
de la metodología aplicada a la determinación de
la presión máxima de compresión de un motor de
combustión interna alternativo de encendido provo-
cado (MEP), el cual se basa en un estudio que parte
de la caracterización de las curvas del consumo de
amperaje del motor de arranque. Se aplica un proto-
colo de adquisición de datos y su posterior análisis
estadístico. Los valores estadísticos de la señal como
energía, promedio, desviación estándar, varianza, kur-
tosis, asimetría, máximo, mínimo y factor de cresta
son seleccionados en función al mayor aporte de infor-
mación para la caracterización del experimento; estos
valores generan bases de datos las cuales son aplicadas
para la creación y entrenamiento de una red neuronal
artificial recurrente (RNAR) en la cual se obtiene un
error absoluto menor al 2 %. En una primera instan-
cia se aplica la metodología de pruebas en un motor
ensamblado en un banco didáctico y luego se procede
a la aplicación del método en motores aplicados en
vehículos.
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1. Introduction

Nowadays, the repair and diagnosis processes applied
in the area of automotive transport range from ar-
tisanal schemes to those reaching a high technical
level [1]. The daily increase in number of circulating
vehicles demands specialized services, with a subse-
quent reduction in failure detection and repair times.
This has led to the development of research through
vibration analysis [2], in order to identify parameters of
critical operation, experimental analysis of the acous-
tic emissions of reciprocating engines [3], non-intrusive
determination of engine cylinder capacity [4].

Due to the complexity of the variables that inter-
vene in the diagnosis of internal combustion engines,
the application of computational mathematics is nec-
essary.

The use of neural network techniques is considered
to be a great contribution in the analysis of the pa-
rameters of internal combustion engines, according to
Saraswati and Chand; cylinder pressure can be recon-
structed with the use of a recurrent neural network
(RNN) [5]. Likewise, in 2012 Cay and Cicek indicated
that specific fuel consumption can be predicted based
on parameters such as: engine braking, effective power,
effective average pressure, and the temperature of the
engine’s exhaust gas. For this, an ANN model based
on the standard backpropagation algorithm was used,
with average errors of less than 3.8% [6].

According to Czarnigowski, it is possible to deter-
mine the spark advance value by using inverse neural
network modeling of the effective torque, thus achiev-
ing idle speed stabilization [7].

The research of Wu, Huang and Chang proposes a
fault diagnosis system of the ICE, based on the pres-
sure of the intake manifold, by using Discrete Wavelet
Transform (DWT) and RAN application. This type
of diagnosis reduces the conventional defect of rely-
ing too much on the experience of technicians [8]. A
very similar study was proposed by Shatnawi and Al-
khassaweneh, where the sound signal emitted by the
ICE is the source of information to discover faults, by
means of an extension neuronal network (ENN), which
improves performance compared to a RAN [9].

Efforts to predict future engine states are also of
great interest in the technological development of en-
gines, as demonstrated by a study developed by the
University of Michigan, where RANs are used to pre-
dict combustion behavior of an ignition engine by ho-
mogeneous charge compression ignition (HCCI) during
its transient operation [10].

With the same purpose of predicting the perfor-
mance and exhaust emissions under different EGR
strategies, researchers Roy, Banerjee and Bose present
a study that uses RAN, obtaining, as a result, correla-
tion coefficients within the range of 0.987–0.999 and an
absolute error in the range of 1.1–4.57% [11]. For the

purpose of optimizing RANs, parallel strategies can
be used, such as the smooth variable structure filter
(SVSF) used to train RANs efficiently, consequently
known as SVSF-based RAN, which is used again for
the detection and classification of engine faults using
vibration data in the crankshaft angle domain [12].

Likewise, through the use of RANs, an automated
diagnostic system for ignition failures in the ICE has
been developed, which consists of three stages: detec-
tion, location and identification of failure severity [13].

Researchers Chen and Randall trained a RAN for
time domain analysis that uses the parametric charac-
teristics of acoustic emissions (AE), to detect damage
to the valves of the ICE [14].

It should be noted that there are very few intelligent
systems at the general level focused on the diagnosis
of mechanical faults involving pressure compression
of the EPI, with expert systems such as DELTA, by
General Electric Company [15], used for the repair
of diesel and electric locomotives. Another example
is STEAMER [15], developed by the Navy Research
Perssoner Development Center, designed to teach the
operation of a steam propulsion plant such as those
used in steam-powered vessels, and finally we can men-
tion Project Eolo CN-235, developed by the Spanish
company Construcciones Aeronáuticas S.A., an interac-
tive teaching system for pilots and aircraft maintenance
technicians, model CN-235.

At a commercial and academic level there are dif-
ferent softwares such as Autodata, which has technical
specifications sheets and estimated repair times, fault
codes, repair routines of different brands and models
of cars, allowing technical personnel to perform any
type of repair with the disadvantage of the subjec-
tivity of the operators in decision-making based on
trial and error in their professional experience, which
maintains an incipient diagnostic system that in many
cases could cause erroneous and deficient repairs to
the automobile [1].

This bibliographic review leads to the investigation
for the generation of methodologies put forth in or-
der to determine the maximum compression pressure
in the combustion chamber in spark-generated igni-
tion engines, in a way that is minimally intrusive and
quickly realizable.

2. Materials and methods

This section explores the main topics related to the
selection of less invasive parameters, engine instrumen-
tation, soft-ware design, data collection, validation of
samples, and the creation and training of a RANN.

2.1. Selection of less invasive parameters

The main objective is to avoid the manipulation and
disas-sembly of elements that would otherwise be nec-



Contreras et al. / Determination of the maximum compression pressure of a spark-ignition engine based on a

recurrent artificial neural network 11

essary to access the spark plugs and install a leak
tester or a compres-someter, for which the following
options are considered: the measurement of the mass
flow parameter of engine air, in-stalling a pressure
gauge in the intake manifold [16], meas-uring the cur-
rent consumption of the starter engine, measur-ing the
battery’s voltage drop. All these options involve the
condition of the starter engine for a determined time
period.

2.2. Engine instrumentation

The previous section outlines the measurement pa-
rameters for the development of the experiment, after
which we see that a MAF type hot wire sensor can
be used to perform the measurement of mass flow air
intake, a MAP type sensor can be used for pressure
measurement in the intake mani-fold, a clamp meter
can be used for the measurement of the consumption
current of the starter engine, a voltage divider con-
nected directly to the battery terminals can be used
for the determination of the voltage drop, all of which
is shown in Table 1 and Figure 1.

Table 1. Engine instrumentation.

Parameters Sensors
Mass flow of air MAF
Intake pressure MAP

Current Clamp meter
Voltage Divided voltage

To identify a cylinder that shows a significant dif-
ference in its compression value, an inductive clamp is
applied to register the spark that corresponds to cylin-
der 1 and, ac-cording to ignition order, the cylinder
with the greatest var-iation is located. The signal of
the CMP sensor is registered to identify each of the
cylinders in the engine on the test workbench.

Figure 1. Engine instrumentation.

For the application of the MAF sensor, several cou-
plings are needed that depend on the diameter of the

intake manifold, so this option is discarded as it also
requires the disassembly of several conduits from the
intake manifold. For the MAP application, a tap on
the intake manifold must be identified which allows
the sensor to be connected, which in some vehicles is
non-existent. Therefore, conduits must be disconnected
and can generate mechanical failures if they are not
reinstalled correctly, and so this option is discarded.

Energy consumption of the starter engine can be
measured with the installation of a clamp meter, for
which no further requirements are needed, only the
identification of the cable and the subsequent installa-
tion; voltage measurement is achieved direct-ly through
the application of clamps on the battery terminals, in-
dicated in Figure 2, without this option representing
major complications.

Figure 2. Measurement of battery amperage and voltage.

Table 2 summarizes the characteristics of the motor
being tested and of the applied current clamp.

Table 2. Equipment

Graphic Characteristics
SIE Hyundai

4 cylinders
DOHC
Electronic fuel injection (MFI)
VT = 1997 cc
ignited by spark /
Unleaded petrol
(RON 95)
Rc = 10.0 : 1
MAP – DIS

Hantek CC – 650 AC/DC Current Clamp
Bandwidth 400 Hz
1 mV / 10 mA
650 A
AC/DC frecuency
range: Up to 400 Hz
Effective Measurement
range: 20 mA to 650 A DC
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2.3. Software design

Once it is determined that amperage consumption,
together with the measurement of the voltage drop,
is the least invasive parameter, the LabView software,
which is compatible with a Ni 6009 card, is used for
the acquisition of data at a rate of 1 kHz, meeting the
Nyquist criterion for signal analysis.

The software also performs the extraction of char-
acteristic parameters and descriptive statistics of each
test performed and, in addition, it generates a database
which will subsequently be applied in the creation and
training of a recurrent artificial neural network.

Figures: 3a, 3b and 3c present a sequence and part

of the programming applied for the acquisition and
development of the software and its graphic environ-
ment.

2.4. Data collection

The graphs resulting from the sampling of the studied
engine, with differences in compression pressure (the
engine is in starting condition), are shown below.

Figure 4 shows the compression pressure curve as
a function of the oscillogram of the starter engine’s
am-perage consumption curve, in which the engine is
in standard conditions, that is, all its cylinders present
a standard compression pressure of about 125 PSI.

Figure 3a. Signal acquisition.

Figure 3b. Signal filtering, development and extraction.
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Figure 3c. Visualization of the signals and their graphic environment.

Figure 4. Engine data collection without major compres-
sion variation.

In Figures 5, 6, 7 and 8, the compression pres-
sure curve is plotted according to the oscillogram of
the starter engine’s amperage consumption curve, in
which the engine presents compression variations in
each cylinder. This means that the cylinder correspond-
ing to the ignition order has a compression pressure of
90 PSI, while the 3 remaining cylinders maintain their
standard pressure. In addition, the signal curve of the
CMP sensor can be identified.

Figure 5. Engine data collection with compression varia-
tion in cylinder 1.

Figure 6. Engine data collection with compression varia-
tion in cylinder 3.
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Figure 7. Engine data collection with compression varia-
tion in cylinder 4.

Figure 8. Engine data collection with compression varia-
tion in cylinder 2.

Next, in Figures 9, 10, 11 and 12 a bar diagram is
applied, in which each bar represents the value of the
compression pressure as a function of the amperage
consumption of the starter engine when the engine
presents compression pressure variations in each cyl-
inder, that is, the cylinder corresponding to the 1-2-3-4
order has a compression pressure of 90 PSI, while the
other 3 remaining cylinders maintain their standard
pressure.

Figure 9. Engine with compression variation in cylinder
1.

Figure 10. Figure 10. Engine with compression variation
in cyl-inder 2.

Figure 11. Engine with compression variation in cylinder
3.

Figure 12. Engine with compression variation in cylinder
4.

2.5. Sample validation

The samples taken by the software designed in the
LabView virtual platform are analyzed statistically
through an ANOVA, which yields the following re-
sults.
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Figure 13. ANOVA of samples.

The scatter plot in the graph showing residual vs.
percentage shown in Figure 13 tends to be a straight
line which affirms the normality of the data and which,
furthermore, is confirmed by the distribution of values
in the form of the Gaussian bell in the histo-gram. The
assumption of constant variance is validated because,
in the graph for adjusted value vs residual value, no
point accumulation pattern is observed. Ad-ditionally,
this corroborates that the samples were ran-domized,
since the point values in the observation order vs.
residue graph show no regions of accumula-tion in the
upper or lower part of zero. Rather, they fluctuate in
a random pattern around the zero line.

In summary, the data collection is correct and the
ANOVA results corroborate this fact.

To determine the most significant characteristic
sta-tistical values, a unidirectional ANOVA is applied
to the variables under study in order to analyze the
p-value results, with the lowest value revealing the
great-est significance of the variables. Next, Table 3
lists the statistical values in order of significance based
on the lowest value of ρ.

Table 3. Equipment

Statistical values p-valúe
Amp peak 0,000
Energy 0,000
Max 0,000
Mean 0,000

Standard Deviation 0,000
Variance 0,000
RMS 0,000

Asymmetry 0,000
F. Crest 0,001
Kurtosis 0,003

2.6. Elman type neuronal network

An Elman-type neural network is applied, based on a
pre-experimental run in which trainings were carried

out with different types of networks, including «feed-
forward», «cascade-forward», «elman-forward». The
one showing lesser errors was selected. Having made
the previous observation, it is indicated that the input
parameters are characteristic values resulting from the
analysis of the amperage consumption curve of the
starter engine; these are presented in Figure 14.

Figure 14. Elman-type neural network

Three hidden layers are applied, each with 15, 10
and 5 neurons per layer, due to the lower computa-
tional expense, since increasing layers and neurons
does not reduce error and the execution time increases.
Moving forward, the activation functions between the
input neuron and the first neuron are of the Logsig
type, followed in the two layers by an Elliotsig func-
tion, and finally between the layer and the output
neu-ron a Purelin type function.

The output neuron indicates the value of the com-
pression result, this according to the computational
analysis generated by the Elman-type RANN.

The network training is done with the Levenberg-
Marquardt function (trainlm), which is shown in Fig-
ure 15.

Figure 16 indicates the gradient in the reduction of
the squared error or MSE and the number of Epochs
created for training the RANN.

3. Results and discussion

In order to compare the correct operation of the creat-
ed and trained RANN according to the proposed pro-
cess, several tests of various compression values are
performed. In this section, two specific compressions
are presented, with values ranging near 120 PSI in
the case of engines operating correctly; another case
is where the values are around 90 PSI, which indi-
cates an imbal-ance fault in the engine’s generalized
combustion.
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Figure 15. Elman-type network training.

Figure 16. Evolution of Elman-type network training.

Figure 17 shows the result of the values obtained
by the RANN for 120 PSI compression sockets, where
the average value of the resulting error and the real
value is 0.0895% of the absolute value.

Figure 17. Compression results at 120 PSI.

Figure 18 shows the result of the values obtained
by the RANN for 90 PSI compression sockets, where
the average value of the resulting error and the real
value is 0.2591% of the absolute value.

Figure 18. Compression results at 90 PSI.

4. Conclusions

This work demonstrates that the application of recur-
rent artificial neural networks (RANN) in the determi-
nation of the compression of an SIE constitutes a
clearly viable alternative; in addition, it has the ad-
vantage of being minimally invasive with error ranges of
less than 1%, and with the possibility of determin-ing
the compression value with a high degree of probability.

Another fundamental aspect to take into account
is that the compression measurement process is ap-
plied very frequently in the evaluation of vehicles for
sales. Therefore, this methodology is presented as a
highly appropriate technique to be integrated into a
diagnostic system with the computational speed that
neural net-works offer.

After the elaboration of this study, in which an
Elman-type neuronal network structure is applied, it
has been observed that this is the most appropriate
given the dynamic nature of the patterns obtained by
the analysis of the starter engine’s energy consumption.
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