
Artículo Científico / Scientific Paper

DOI: 10.17163/ings.n15.2016.03

Uso de métodos multicriterio de toma
de decisiones para la selección de

biomasa en reactores Fischer Tropsch

Use of multicriteria decision making
methods for biomass selection in

Fischer Tropsch reactors
Javier Martínez-Gómez1,∗

1,∗Instituto Nacional de Eficiencia Energética y Energías Renovables (INER), Quito – Ecuador. Autor para
correspondencia ): javier.martinez@iner.gob.ec, javiermtnezg@gmail.com

Recibido: 04-03-2016, aprobado tras revisión: 06-06-2016.
Forma sugerida de citación: Martínez, J. (2016). «Uso de métodos multicriterio de toma de decisiones para la selección
de biomasa en reactores Fischer Tropsch». Ingenius. N.◦15, (Enero-Junio). pp. 27-36. ISSN: 1390-650X.

Resumen Abstract
La elección adecuada de un combustible es una tarea
importante para cumplir con los requisitos de un
biorreactor. El número de combustible de biomasa
con diferentes propiedades disponibles para propor-
cionar a un biorreactor es enorme. Sin embargo, la
aplicación de aproximaciones matemáticas eficientes
y sistemáticas puede lograr la evaluación. El uso de
métodos multicriterio de toma de decisiones (MCDM)
que consideran propiedades características y criterios
cualitativos para asignar importancia a cada alterna-
tiva tiene el fin de seleccionar la mejor opción. Esta
investigación se basa en el uso MCDM para la se-
lección del combustible para un reactor de Fischer
Tropsch. Los métodos MCDM implementados son la
evaluación proporcional compleja de alternativas con
las relaciones grises (COPRAS-G), análisis operativo
de calificación y competitividad (OCRA), una evalua-
ción de relación de aditivos (ARAS), técnica para
el orden de preferencia por similitud con solución
ideal (TOPSIS). La ponderación de los criterios se
realizó por el proceso analítico jerárquico (AHP) y el
método de entropía. Los resultados muestran que el
arroz blanco es la mejor opción para un combustible
de biomasa para los cinco MCMD.

Proper choice of a fuel is an important task to ful-
fill the requirements for a bioreactor. The number of
biomass fuel with different properties available to pro-
vide to a bioreactor is vast. However, application of ef-
ficiency and systematic mathematical approaches may
achieve the evaluation. Multi-criteria decision making
methods (MCDM) considers characteristic properties
and qualitative criteria to assign importance to each
alternative in order to select the best option. This
research use MCDM for the selection of the fuel for
a Fischer Tropsch reactor. The MCMD methods im-
plemented are complex proportional assessment of
alternatives with gray relations (COPRAS-G), oper-
ational competitiveness rating analysis (OCRA), a
new additive ratio assessment (ARAS), Technique for
Order of Preference by Similarity to Ideal Solution
(TOPSIS) and SMART methods. The criteria weight-
ing was performed by compromised weighting method
composed of AHP (analytic hierarchy process) and
Entropy methods. The results illustrated white grain
appear has the best choice for a biomass fuel for the
five MCMD.
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1. Introducction

Biomass is a natural treasure for chemicals that up to
now are made from fossil resources. Unfortunately, the
heterogeneity and complexity of biomass still preclude
exploitation of its full potential. New technologies for
economical valorization of biomass are under devel-
opment, but cannot yet compete with petrochemical
processes. However, rising prices of fossil resources, in-
evitably will lead to replacement of oil refineries with
other biorefineries or bioreactors.

The concern on impacts of global warming and
decrease of the conventional fossil fuel sources enhance
the interest to renewable energy sources. Biomass, con-
taining all organic material that stems from plants. As
a very versatile energy source, biomass can be used in
transport, electricity and heating [1], [2]. Biomass, sun
(e.g. photovoltaic solar cells and solar heat collectors),
wind (e.g. wind turbines), water (e.g. hydropower, tidal
energy) and geothermal resources are all sources of
renewable energy, but biomass is the only renewable
resource of carbon for the production of chemicals, ma-
terials and fuels. Before the onset of the petrochemical
era, renewable feedstocks supplied a significant portion
of the global chemical and energy needs [3], [4].

However, a study regarding to a fuel of a bioreac-
tor. Multi criteria decision making methods (MCDM)
appear as an alternative in engineering design due to
its adaptability for different applications [5], [6]. The
MCDM methods can be broadly divided into two cate-
gories, as (i) multi-objective decision-making (MODM)
and (ii) multi-attribute decision-making (MADM).
There are also several methods in each of the above-
mentioned categories. Priority-based, outranking, pref-
erential ranking, distance-based and mixed methods
are some of the popular MCDM methods as applied
for evaluating and selecting the most suitable solution
for diverse engineering applications. In most MCDM
methods a certain weight is assigned to each criteria.

This paper solves the problem of selecting of a
biomass fuel using recent mathematical tools and
techniques for accurate ranking of the alternatives
by five preference ranking- based MCDM methods,
i.e. COPRAS-G, OCRA, ARAS, TOPSIS and VIKOR
methods have been implemented. The criteria weight-
ing was performed by compromised weighting method
composed of AHP and Entropy methods. For these
methods, a list of all the possible choices from the best
to the worst suitable biofuel is obtained, taking into
account different criteria.

2. Materials and Methods

2.1. Definition of the decision making problem

Biomass can be characterized by the Moisture content,
Content of volatiles, Content of ashes, Elementary com-

position, Density, Energy density [7]. The elementary
composition determines the heating value. Moisture
content ranges between 10 and 60 % and also has a
significant influence on the lower heating value (LHV).
In general, it can be observed that biomass has inferior
heating values compared to fossil fuels like black coal
or crude oil.

The energy density with the SI-unit [J/m3] is de-
fined with the lower heating value and the bulk den-
sity [8]. The bulk density is the space that for example
wood logs or straw bales fill per kilogram. Biomass
normally has a low bulk density, and together with
the low heating values, its energy density is very small.
As a result, the transport costs for biomass are high.
It should therefore only be used in close proximity
to its origin. This explains the decentralized charac-
ter of energy generation from biomass: unlike fossil
power plants, where high energy density fuel can be
transported to central conversion plants with several
megawatts up to a few gigawatts, the biomass to en-
ergy conversion takes place in small plants with power
out-puts of 50 kW – 300 MW [9]. In case of electricity
as secondary energy, conduction losses can be reduced.
Another way is to produce secondary energy carriers
like ethanol, biodiesel or second generation biofuels
with higher energy density and transport them to the
place of consumption.

One of the most important biomass property is
considered to be the lower heating value (LHV), the
highest values of which are desired in order to provide
the most quantity of energy to a determine application.
In addition, lower values of [%] Moisture Content (MC)
would be favorable. Furthermore, higher densities (D)
of the biomass can lead to a less volume of fuel. The
lowest values of ash melting (AM) are necessary to
eliminate the impurities. A high Ash dry and volatile
components are which leads to higher conversion rates.
Among these six criteria, the moisture content and ash
melting, are a non-beneficial properties. Seven alterna-
tives for the biomass fuel were taken into consideration:
straw, wood, miscanthus, whole cereal, plants, cattle
manure, rice husk, wheat grain. The properties of the
biomass fuel alternatives are given in Table 1 and their
average values were used.

3. Multi-criteria decision making
methods

3.1. Criteria weighting

The criteria weights are calculated using a compro-
mised weighting method, where the AHP and Entropy
methods, in order to take into account the subjective
and objective weights of the criteria and to obtain
more reasonable weight coefficients.
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Table 1. Material properties for a biomass fuel [1]-[12].

(LHV) (MC) (D) (AM) (AD) (VD)
LHV Moisture Content Density Ash melting Ash, dry Volatiles, dry

[MJ/kg] [%] (kg/m3) [°C] [%] [%]
Straw 18,25 15 67,5 1040 5 78
Wood 19,25 40 320 1150 2,1 77,5

Miscanthus 18,5 20 160 1040 3,2 81
Whole cereal 18,25 15 60 1550 5 78plants

Cattle manure 16,4 14 550 1304,5 13,67 60,5
Rice Husk 13,5 3,5 100 1505 12,7 67,9

Wheat grain 16,66 7 790 1035 7,27 15,2

3.1.1. Analytic hierarchy process (AHP)

The AHP method was developed by Saaty [10] to
model subjective decision-making processes based on
multiple criteria in a hierarchical system. The method
composes of three principles:

a) Structure of the model.
b) Comparative judgment of the alternatives and

the criteria.
c) Assessing consistency in results.

a) Structure of the model. In order to identify the
importance of every alternative in an application, each
alternative has been assigned a value. The ranking
is composed by three levels: 1). general objective, b).
criteria for every alternative, c). alternatives to regard
[10]
b) Comparative judgment of the alternatives
and the criteria. The weight of criteria respect to
other is set in this section. To quantify each coeffi-
cient it is required experience and knowledge of the
application. Saaty [10] classified the importance pa-
rameters show in Table 2. The relative importance of
two criteria is rated using a scale with the digits 1,
3, 5, 7 and 9, where 1 denotes “equally important”,
3 for “slightly more important”, 5 for “strongly more
important”, 7 for “demonstrably more important” and
9 for “absolutely more important”. The values 2, 4,
6 and 8 are applied to differentiate slightly differing
judgments. The comparison among n criteria is resume
in matrix A (n× n), the global arrange is expressed
in equation (1).

A=

 a11 . . . a1n

...
. . .

...
an1 · · · ann

aii = 1, aij = 1
aij

, aij 6= 0

(1)
Afterwards, from matrix A it is determined the

relative priority among properties. The eigenvector w
is the weight importance and it corresponds with the
largest eigenvector (λmax):

(A− λmax)w = 0 (2)

The consistency of the results is resumed by the
pairwise comparison of alternatives. Matrix A can be
ranked as 1 and λmax = n [10].

c) Consistency assessment. In order to ensure the
consistency of the subjective perception and the accu-
racy of the results it is necessary to distinguish the im-
portance of alternatives among them. In equations (3)
and (4) is shown the consistency indexes required to
validate the results.

CI = λmax − n
n− 1 (3)

CR = CR

RI
(4)

Where
n: Number of selection criteria.
RI: Random index.
CI: Consistency index.
CR: Consistency relationship.
λmax(A): Largest eigenvalue.

The CR should be under 0,1 for a reliable result
otherwise, the importance coefficient (1-9) has to be
set again and CR recalculated (16). The RI is deter-
mined for different size matrixes, and its value is 1,32
for an 7x6 matrix.

3.1.2. Entropy method

Entropy method indicates that a broad distribution
represents more uncertainty than that of a sharply
peaked one [5]. Equation (5) shows the decision matrix
A of multi-criteria problem with m alternatives and n
criteria:

A =

A1
A2
...
Am


x11 x12 · · · x1n

x21 x22
. . . x2n

...
... · · ·

...
xn1 xn2 · · · xnn

 ; x1, x2, . . . , xn

(5)
where xij (i = 1, 2, ...,m; j = 1, 2, ..., n) is the perfor-
mance value of the ith alternative to the jth criteria.
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The normalized decision matrix Pij is calcu-
lated (6), in order to determine the weights by the
Entropy method.

Pij = xij√∑m
i=1 x

2
ij

(6)

The Entropy value Ej of jth criteria can be ob-
tained as:

Ej = −k
m∑

i=1
Pij ln(Pij) j = 1, 2, . . . , n (7)

where k = 1
ln m is a constant that guarantees 0 ≤ Ej ≤

1 and m is the number of alternatives. The degree of
divergence (dj) of the average information contained
by each criterion can be obtained from Eq. (8):

dj = |1− Ej | (8)

Thus, the weight of Entropy of jth criteria can be
defined as:

βj = dj∑n
j=1 dj

(9)

3.2. COPRAS-G method

COPRAS-G method [11] is a MCDM method that
applies gray numbers to evaluate several alternatives
of an engineering application. The gray numbers are
a section of the gray theory to confront insufficient
or incomplete information [11]. White number, gray
number and black number are the three classifications
to distinguish the uncertainty level of information.

The uncertainty level can be expressed by three
numbers: white, gray and black. Let the number
⊗X = [x, x̄] = {x|x ≤ x ≤ x̄} and x ∈ R, where
⊗X has two real numbers, x (the lower limit of ⊗X)
and x̄ (the upper limit of ⊗X) is defined as follows [11]:

a) White number: if x = x̄, then ⊗X has the com-
plete information.

b) Gray number: ⊗X = [x, x̄] means insufficient
and uncertain information.

c) Black number: if x→∞ and x̄→∞, then ⊗X
has no meaningful information.

The COPRAS-G method uses a stepwise ranking
and evaluating procedure of the alternatives in terms
of significance and utility degree. The procedure of
applying COPRAS-G method is formulated by the
following steps [11].
Step 1: Selection of a set of the most important crite-
ria, describing the alternatives and develop the initial
decision matrix, ⊗X.

⊗X


⊗x11 ⊗x12 · · · ⊗x1n

⊗x21 ⊗x22
. . . ⊗x2n

...
... · · ·

...
⊗xm1 ⊗xm2 · · · ⊗xmn

 =


(x11, b11) (x12, b12) · · · (x1n, b1n)

(x21, b21) (x22, b22)
. . . (x2n, b2n)

...
... · · ·

...
(xm1, bm1) (xm1, bm1) · · · (xm,n, bm,n)


(10)

where ⊗xij is the interval performance value of ith
alternative on jth criterion. The value of ⊗xij is de-
termined by xij (the smallest value or lower limit) and
bij (the biggest value or upper limit).
Step 2: Normalize the decision matrix, ⊗X using the
following equations. Eq. (11) is applied for ⊗xij or
lower limit values, whereas, Eq. (12) is used for bij or
upper limit values.

⊗ X̄ = |x̄ij |m×n = 2xij[∑n
j=1 xij +

∑n
j=1 bij

] (11)

⊗ X̄ = |b̄ij |m×n = 2bij[∑n
j=1 xij +

∑n
j=1 bij

] (12)

Step 3: Calculate the weights of each criterion.
Step 4: Determine the weighted normalized decision
matrix, ⊗X̄ by mean of the equations (13) and (14).

⊗ ¯̄X = |¯̄xij |m×n = x̄ij × wj

(i = 1, 2, . . . ,m; j = 1, 2, . . . , n)
(13)

⊗ ¯̄X = |¯̄bij |m×n = b̄ij × wj (14)

Step 5: The weighted mean normalized sums are cal-
culated for both the beneficial attributes Pi based on
equation (15) and non-beneficial attributes Ri based
on equation (16) for all the alternatives.

Pi = 1
2

k∑
j=1

(
¯̄xij + ¯̄bij

)
(15)

Ri = 1
2

n∑
j=k+1

(
¯̄xij + ¯̄bij

)
(16)

Step 6: Determine the minimum value of Ri.

Rmin = minRi = (i = 1, 2, . . . ,m) (17)

Step 7: Determine the relative significances or priori-
ties of the alternatives. The priorities of the candidate
alternatives are calculated on the basis of Qi with
equation (18). The greater the value of Qi, the higher
is the priority of the alternative. The alternative with
the highest relative significance value (Qmax) is the
best choice among the feasible candidates.

Qi = Pi +
Rmin

∑m
i=1 Ri

Ri

∑m
i=1 (Rmin/Ri)

(18)
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Step 8: Determine the maximum relative significance
value.

Qmax = maxQi (i = 1, 2, . . . ,m) (19)

Step 9: Calculate the quantitative utility (Ui) for ith
alternative through the equation (20). The ranking is
set by the Qi.

Ui =
[
Qi

Qmax

]
× 100% (20)

With the increase or decrease in the value of the
relative significance for an alternative, it is observed
that its degree of utility also increases or decreases.
These utility values of the candidate alternatives range
from 0 % to 100 %. The best alternative is assigned
according to the maximum value 100 %.

3.3. OCRA method

The OCRA method was developed to measure the rel-
ative performance of a set of production units, where
resources are consumed to create value-added outputs.
OCRA uses an intuitive method for incorporating the
decision maker’s preferences about the relative impor-
tance of the criteria. The general OCRA procedure is
described as below [12]:
Step 1: Compute the preference ratings with respect to
the non- beneficial criteria. The aggregate performance
of ith alternative with respect to all the input criteria
is calculated using the following equation:

Īi =
n∑

j=1
wj

max
(
xm

j

)
− xi

j

min
(
xm

j

)
(i = 1, 2, . . . ,m; j = 1, 2, . . . , n)

(21)

where Īi is the measure of the relative performance
of ith alternative and xi

j is the performance score of ith
alternative with respect to jth input criterion. If ith
alternative is preferred to mth alternative with respect
to jth criterion, then xi

j < xm
j . Then term max(xm

j )−xi
j

min(xm
j )

indicates the difference in performance scores for cri-
terion j, between ith alternative and the alternative
whose score for criterion j is the highest among all the
alternatives considered.
Step 2: Calculate the linear preference rating for the
input criteria

( ¯̄Ii

)
using equation (22):

¯̄Ii = Īi −min
(
Īi

)
(22)

Step 3: Compute the preference ratings with respect to
the beneficial criteria. The aggregate performance for
ith alternative on all the beneficial or output criteria
is measured using the equation (23):

Ōi =
H∑

h=1
wh

xi
h −min (xm

h )
min (xm

h ) (23)

where h = 1, 2, . . . ,H indicates the number of benefi-
cial attributes or output criteria and wh is calibration
constant or weight importance of hth output criteria.
The higher an alternative’s score for an output crite-
rion, the higher is the preference for that alternative.
It can be mentioned that

∑n
j=1 wj +

∑H
h=1 wh = 1. It

was considered a
∑H

h=1 wh = 0, 00375
Step 4: Calculate the linear preference rating for the
output criteria

( ¯̄Ii

)
using the equation (24):

¯̄Oi = Ōi −min
(
Ōi

)
(24)

Step 5: Compute the overall preference ratings (Pi) as
follows in equation (25):

Pi =
( ¯̄Ii + ¯̄Oi

)
−min

( ¯̄Im + ¯̄Om

)
(25)

The alternatives are ranked according to the values
of the overall preference rating. The best alternative is
determined as the one with the minimum value of Pi.

3.4. ARAS method

The ARAS method is based on utility theory and quan-
titative measurements. The steps of ARAS method
are as follows [13]:
Step 1: Determine the normalized decision matrix,
using linear normalization procedure for beneficial
attributes [13]. For non-beneficial attributes, the nor-
malization procedure follows two steps. At first, the
reciprocal of each criterion with respect to all the
alternatives is taken as follows:

x∗ij = 1
xij

(26)

In the second step, the normalized values are cal-
culated as follows:

[rij ]m×n =
x∗ij∑m

i=1 x
∗
ij

(27)

Step 2: Determine the weighted normalized decision
matrix, D.
Step 3: Determine the optimality function (Si) for ith
alternative by means of the equation (28):

Si =
n∑

j=1
yij (28)

The optimality function Si has a direct and propor-
tional relationship with values in the decision matrix
and criteria weights.
Step 4: Calculate the degree of the utility (Ui) for each
alternative. The values of Ui is calculated by means of
equation (29):

Ui = Si

S0
(29)

The utility values of each alternative range from
0 % to 100 %. The alternative with the highest Ui is
the best choice among the alternatives.
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3.5. TOPSIS method

The basic idea of TOPSIS is that the best decision
should be made to be closest to the ideal and farthest
from the non-ideal [14]. Such ideal and negative-ideal
solutions are computed by considering the various al-
ternatives. The highest percentage corresponds to the
best alternative.

The TOPSIS approach is structured by the follow-
ing procedure [14]:
Step 1: Normalize the decision matrix nij by is per-
formed using the equation 30.

nij = xij√∑n
i=1 x

2
ij

(30)

Where xij is the performance measure of jth criterion
respect to ith alternative.
Step 2: Sync the weight wj and the normalized matrix
nij , see equation (31).

Vij = nij ·wj (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) (31)

Step 3: The ideal solutions (V +) and nadir solutions
(V −) are determined using (32) and (33):{

V +
1 , V +

2 , . . . , V +
n

}
=
{

(maxiVij |j ∈ K) ,(
miniVij |j ∈ K

′
)}
{i = 1, 2, . . . ,m}

(32)

{
V −1 , V −2 , . . . , V −n

}
=
{

(miniVij |j ∈ K) ,(
maxiVij |j ∈ K

′
)}
{i = 1, 2, . . . ,m}

(33)

Where K and K ′ are the index set of benefit criteria
and the index set of cost criteria, respectively.
Step 4: The distance between the ideal and nadir solu-
tion is quantified. The two Euclidean distances for each
alternative are computed as given by equations (34)
and (35):

S+
i =

√√√√ n∑
j=1

(
Vij − V +

j

)2
i = 1, 2, . . . , n (34)

S−i =

√√√√ n∑
j=1

(
Vij − V −j

)2
i = 1, 2, . . . , n (35)

Step 5: The relative closeness (Ci) is computed by
equation (36).

Ci = S−i
S−i + S−i

i = 1, 2, . . . ,m; 0 ≤ Ci ≤ 1 (36)

The highest Ci coefficients correspond to the best
alternatives.

3.6. SMART method

SMART is one of the simplest forms of Multi-Attribute
Utility Theory (MAUT) [15]. It requires two assump-
tions, namely “utility independence and preferential
independence”. This method conveniently converts im-
portance weights into actual numbers. The ranking
value xj of alternative Aj is obtained simply as the
weighted algebraic mean of the utility values associated
with it, i.e.

xj =
∑n

i=1 wi · ai∑n
i=1 wi

(37)

Besides the above simple additive model, (37) also
proposed a simple method to assess weights for each
of the criteria to reflect its relative importance to the
decision. First, the criteria are ranked in order of im-
portance. Then, the next-least important criterion is
chosen, more points are assigned to it, and so on, to
reflect their relative importance. The final weights are
obtained by normalizing the sum of the points to one.

3.7. Spearman’s rank correlation coefficient

The Spearman’s rank correlation coefficient measures
the relation among nonlinear datasets. Its purpose is
to quantify the strength of linear relationship between
two variables. If there are no repeated data values, a
perfect Spearman correlation of +1 or −1 occurs when
each of the variables is a perfect monotone function
of the other [16]. The Spearman’s rank correlation is
computed by equation (38).

Rs = 1− 6
∑
d2

i

n (n2 − 1) (38)

Where:
Rs: Spearman’s rank coefficient
di: Difference between ranks of each case
n: Number of pairs of values

4. Results

After the determination of the weights of different crite-
ria using the AHP and Entropy methods, these weights
were applied to the MCDM methods. The results has
been established with COPRAS-G, OCRA, ARAS,
TOPSIS and SMART methods. The results have been
compared by means of Spearman’s rank correlation
coefficient in order to determine their convergence and
sensibility and ranked the best solutions.

4.1. Criteria weighting

The comparison among properties of every alternative
are in Table 1. The properties identification appears
under the name of each property as (LHV), (MC), (D),
(AM), (AD) and (VD). The weight of each alternative
was established with AHP and Entropy methods. The
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criteria weighting was firstly implemented by the AHP
method to obtain the subjective weights of different
evaluation criteria. In Table 2 is can be showed the
scale of relative importance used in the AHP method.

Table 2. Scale of relative importance.

Definition Intensity of importance
Equal importance 1
Moderate importance 3
Strong importance 5
Very strong importance 7
Extreme importance 9
Intermediate importance 2, 4, 6, 8

In Table 3 and Table 4 is illustrated the decision
matrix generated for a biomass fuel, which take into
account the importance of each criteria. The most im-
portant criteria to generate the matrix was considered
(LHV); slightly more important were taken (MC), and
(D); strongly more important was considered (AM)
and (AD); demonstrably more important were taken
(VD). The results are consistent due to the value of
the consistency index (CI = 0, 023) and the consis-
tency ratio (CR = 0, 018) which are lower than the
limit 0, 1. At the final step, the compromised weights
of the criteria (wj) were calculated using the Eq. (1).
In Table 5, the weight coefficient of every criterion
was determined based in results of AHP and Entropy
methods. On one hand, the most representative values
are (LHV) 61, 3. On the other hand, less than 39 % of
the overall weight is distributed in (MC), (D), (AM),
(AD) and (VD).

Table 3. Comparison among criteria for AHP Method.

(LHV) (MC) (D) (AM) (AD) (VD)
1 3 3 5 5 7

0,333 1 1 3 3 5
0,333 1 1 3 3 5
0,2 0,333 0,333 1 1 3
0,2 0,333 0,333 1 1 3
0,143 0,2 0,2 0,333 0,333 1

Table 4. Normalized decision matrix Pij for entropy
method.

Material (LHV) (MC) (D) (AM) (AD) (VD)
1 0,332 0,286 0,05 0,296 0,217 0,42
2 0,35 0,762 0,239 0,327 0,091 0,417
3 0,337 0,381 0,119 0,296 0,139 0,436
4 0,332 0,286 0,045 0,441 0,217 0,42
5 0,55 0,133 0,634 0,339 0,348 0,189
6 0,298 0,267 0,41 0,371 0,594 0,326
7 0,246 0,067 0,075 0,428 0,552 0,366

Table 5. Criteria weighting by the AHP (αj) and balanced
scales entropy (βj), methods and compromised weighting
(wj) methods.

(LHV) (MC) (D) (AM) (AD) (VD)
0,425 0,191 0,191 0,078 0,078 0,037
0,246 0,111 0,026 0,257 0,155 0,204
0,613 0,125 0,03 0,118 0,071 0,044

4.2. COPRAS-G

The related decision matrix is first performed from the
gray numbers applied in COPRAS-G is illustrated in
Table 6. Equations 15 and 16 allow to develop decision
matrix with the weighted normalized, as is given in
Table 7. Later, the normalized matrix and the weight
are compared by means of equations 18 and 19. Ta-
ble 8 exhibits the priority values (Qi) and quantitative
utility (Ui) values for the candidate alternatives for a
biomass fuel, as calculated using equations (18) and
(20) respectively. Table 8 also shows the ranking of
the alternative fuels as 7-5-3-6-1-4-2. Wheat grain and
cattle mature, obtain the first and second ranks re-
spectively, in contrast wood has the worst choice.

4.3. OCRA

Firstly, the aggregate performance of each alternative
with respect to all the input criteria is calculated with
equation (21). Applying equation (23), the aggregate
performance of the alternatives on all the beneficial or
output criteria are then determined and subsequently,
the linear preference ratings for the output criteria
are calculated. Finally, the overall preference rating
for each alternative fuel is determined using equa-
tion (25). The detailed computations of this method
for a biomass fuel are presented in Table 9. In this
method, the ranking fuel alternatives is obtained as
6-1-7-4-3-5-2, which suggests that Rice Husk attains
the top rank. Straw is the second best choice and wood
has the last rank.

In this method, the ranking fuel alternatives is ob-
tained as 6-7-1-3-4-5-2. For this method it is revealed
which the best alternative is rice husk and wheat grain
is the second best solution as a fuel. In contrast wood
has the last rank and cattle manure is the second last
rank.

4.4. ARAS

Weighted normalized decision matrix for ARAS
method, as given in Table 10, and using equations (28)
the optimality function ( ) for each of the fuel alterna-
tive is calculated. Then, using the equation (29) the
corresponding values of the utility degree ( ) are deter-
mined for all the alternatives. The values of and , and
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Table 6. Decision matrix of COPRAS-G method.

Material (LHV) (MC) (D) (AM) (AD) (VD)
1 17,5 19 10 20 24 111 900 1180 3 7 75 81
2 18,5 20 20 60 40 600 1100 1200 0,3 4 70 85
3 18 19 10 30 140 180 880 1200 1,5 5 78 84
4 17,5 19 10 20 25 95 1300 1800 3 7 75 81
5 13,6 19,2 12 16 450 650 1243 1366 11,6 15,6 54,5 66,5
6 12 15 2 5 86 114 1460 1650 5 18,5 60,6 75,3
7 17 18,3 6 8 690 890 870 1220 6,3 8,3 10,4 20

Table 7. Normalized matrix made of gray numbers.

Material (LHV) (MC) (D) (AM) (AD) (VD)
1 0,088 0,096 0,011 0,022 0 0,002 0,012 0,016 0,004 0,01 0,007 0,008
2 0,093 0,101 0,022 0,065 0,001 0,016 0,015 0,016 0 0,006 0,007 0,008
3 0,091 0,096 0,011 0,033 0,002 0,026 0,012 0,016 0,002 0,007 0,008 0,008
4 0,088 0,096 0,011 0,022 0 0,004 0,018 0,024 0,004 0,01 0,007 0,008
5 0,068 0,097 0,013 0,017 0,007 0,015 0,017 0,018 0,017 0,023 0,005 0,006
6 0,061 0,075 0,002 0,005 0,007 0,018 0,02 0,022 0,007 0,027 0,005 0,007
7 0,086 0,092 0,007 0,009 0,001 0,024 0,012 0,017 0,009 0,012 0,006 0,002

the ranking achieved by the biomass fuel alternatives
are illustrated in Table 11.

In this method, the ranking fuel alternatives is ob-
tained as 6-7-1-3-4-5-2. For this method it is revealed
which the best alternative is rice husk and wheat grain
is the second best solution as a fuel. In contrast wood
has the last rank and cattle manure is the second last
rank.

Table 8. Pi, Ri, Qi and Ui values.

Material Pi Ri Qi Ui Rank
1 0,108 0,03 0,144 86,3 5
2 0,116 0,059 0,134 80,593 7
3 0,12 0,036 0,15 90,14 3
4 0,109 0,037 0,138 83,041 6
5 0,119 0,033 0,152 91,492 2
6 0,104 0,025 0,148 88,805 4
7 0,116 0,022 0,167 100 1

Table 9. Computation details for OCRA method.

Material Īi
¯̄Ii Ōi

¯̄Oi Pi Rank
1 1,555 0,973 0,003 0 0,937 1
2 0,582 0 0,009 0,006 0,005 7
3 1,378 0,797 0,004 0,001 0,796 5
4 1,52 0,938 0,003 0 0,937 4
5 1,132 0,55 0,01 0 0,548 6
6 1,875 1,293 0,003 0 1,292 1
7 1,512 0,931 0,009 0,006 0,939 2

Table 10. Weighted normalized decision matrix for ARAS
method.

Material (LHV) (MC) (D) (AM) (AD) (VD)
1 0,082 0,012 0,008 0,019 0,01 0,004
2 0,077 0,004 0,002 0,018 0,023 0,004
3 0,081 0,009 0,003 0,019 0,015 0,004
4 0,082 0,012 0,009 0,013 0,01 0,004
5 0,091 0,013 0,001 0,015 0,004 0,005
6 0,11 0,05 0,006 0,013 0,004 0,004
7 0,09 0,025 0,001 0,019 0,007 0,02

Table 11. Si, Ui and Rank values in ARAS method.

Material Si Ui Rank
1 0,134 0,715 3
2 0,128 0,68 7
3 0,131 0,697 4
4 0,129 0,687 5
5 0,128 0,683 6
6 0,188 1 1
7 0,161 0,857 2

4.5. TOPSIS

The decision matrix given in Table 1 was normalized
using equation (31) for the application of the TOPSIS
method and this was multiplied by the compromised
weights obtained. In Table 12 is shown the weighted
and normalized decision matrix Vij for the alternatives
for a biomass fuel. The ideal and nadir ideal solutions,
determined by equations (32) and (33), are presented
in Table 13. The distances from the ideal (S+

i ) and
nadir ideal solutions (S−i ) and the relative closeness
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to the ideal solution (Ci) are measured using equa-
tions (34)–(36). The biomass fuel alternatives could
be ranked by the relative degree of approximation and
the ranking is shown in Table 14. The ranking of the
fuel alternatives are 7-1-5-4-3-6-2. For TOPSIS method
wheat grain obtain the first rank for the biomass fuel.
In contrast, wood has the last rank.

Table 12. Weighted and normalized decision matrix, Vij

of TOPSIS.

Material (LHV) (MC) (D) (AM) (AD) (VD)
1 0,398 0,288 0,065 0,315 0,232 0,428
2 0,419 0,769 0,309 0,348 0,097 0,425
3 0,403 0,384 0,154 0,315 0,148 0,444
4 0,398 0,288 0,058 0,469 0,232 0,428
5 0,357 0,269 0,531 0,395 0,633 0,332
6 0,294 0,067 0,097 0,455 0,589 0,373
7 0,363 0,135 0,763 0,313 0,337 0,083

Table 13. The ideal and nadir ideal solutions of TOPSIS
method.

(LHV) (MC) (D) (AM) (AD) (VD)
V + 0,257 0,008 0,023 0,037 0,045 0,02
V − 0,18 0,096 0,002 0,055 0,007 0,004

Table 14. Computation details for TOPSIS method.

Material S+
i S−i Ci Rank

1 0,047 0,091 0,66 2
2 0,097 0,08 0,452 7
3 0,056 0,086 0,603 5
4 0,05 0,089 0,639 4
5 0,047 0,085 0,642 3
6 0,081 0,095 0,54 6
7 0,044 0,096 0,683 1

4.6. SMART

The computational details, result and ranking of the
SMART method are presented in in Table 15. The
biomass fuel with the highest result was given the
best rank. The ranking of alternatives by the SMART
method was 6-7-5-1-2-3-4 which indicates that rice
husk and wheat grain obtain the first and second ranks
biomass fuel. On the other hand, whole cereal has the
last rank and miscantus is the second last rank.

Table 15. Computation details for SMART method.

LHV MC D AM A V Results Ranking
0,151 0,094 0,033 0,165 0,102 0,17 0,119 4
0,159 0,035 0,156 0,149 0,043 0,169 0,119 5
0,153 0,071 0,078 0,165 0,065 0,177 0,118 6
0,151 0,094 0,029 0,111 0,102 0,17 0,11 7
0,136 0,101 0,269 0,131 0,279 0,132 0,175 3
0,112 0,403 0,049 0,114 0,26 0,148 0,181 1
0,138 0,202 0,386 0,166 0,149 0,033 0,179 2

4.7. Spearman’s correlation coefficients

In Table 16 is shown the Spearman’s correlation coef-
ficients for biomass fuel. These represent the mutual
correspondence among MCDM methods. The magni-
tude of this parameter for a PCM exceeds 0, 554 for
the relation of OCRA, ARAS, TOPSIS and SMART
methods. Moreover, the correlation have a value of
0, 839 between OCRA and TOPSIS methods.

Table 16. Spearman’s correlation indexes

OCRA ARAS TOPSIS SMART
COPRAS 0,357 0,357 0,554 0,357
OCRA - 0,714 0,839 0,554
ARAS - - 0,554 0,714
TOPSIS - - - 0,357

5. Discussion

The MCDM are an important tool to recognize and
identify the best alternative in a bunch of several
of them. These methods can adapt to different sort
biomass fuel that would affect the final result and that
is why these approaches are applied in different areas
of science, engineering and management.

In this case, we take advantage of MCDM in order
know the best alternative for biomass fuel. In Fig. 1 is
resumed the overall rank of each MCDM method for
the different alternatives. It has been observed than
COPRAS-G and TOPSIS methods the best biomass
fuel alternative and the second best option for OCRA,
ARAS and SMART is white grain because it has a
good LHV and low moisture content. In case of OCRA,
ARAS and SMART methods the best alternative corre-
spond with rice husk. In addition, wood are presented
on the last rank alternatives for four of the five MCDMs
for its high moisture content. The method validation
was correlated by Spearman’s coefficients.
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Figure 1. Rank materilas vs. alternative materials for a
biomass fuel.
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6. Conclusions

In this paper the selection problem for a biomass fuel
has been solved utilizing a decision model. The model
includes the COPRAS-G, OCRA, ARAS, TOPSIS and
SMART methods. Ranking scores which were used to
rank the alternative biomass fuel were obtained as
results of the methods. The weighting of the fuel prop-
erties was performed using the compromised weighting
method wj composes of the AHP and Entropy meth-
ods. According to the results of the best alternative
COPRAS-G and TOPSIS methods and the second
best option for OCRA, ARAS and SMART, white
grain appear has the best choice for a biomass fuel.

It was validated that the MCDM approach is a
viable tool in solving the complex decision problems.
Spearman’s rank correlation coefficient was found to
be very useful in assessment of the correlation between
three ranking methods. The model which was devel-
oped for the decision of a biomass fuel can be applied
on other selection problems.
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