Numerical simulation of a pusher type furnace for rust-forming billets

Main Article Content

Sixtos A. Arreola Villa
Gildardo Solorio-Díaz
H. J. Vergara Hernández

Abstract

In this paper shows a numerical model of a pusher type reheating furnace created in commercial fluid dynamics software, considering the heating of the billets at non steady state. In addition, a methodology was used to achieve the sliding of the billets inside the furnace. To simulate the process combustion it was used the transport species model called EddyDissipation, and for the fluid dynamics of gas it was used k ? ‘ realizable model, also the heat transfer by conduction, convection, and radiation were simulated. To simulate the radiation heat transfer from the gases to the billet, the P-1 model was used. Plant measurements in different areas of the furnace allowed a good validation of the numerical model, and also a model for the oxidation process was used. It was characterized the thermal history in unsteady state of a square billet 16 mm and 12.7 mm in length, during their displacement inside the heating furnace 14.7 x 17.5 m industrial size, these temperature measurements allowed to characterize losses rusting material at each time and position within the heating furnace.