Modeling of an Electromagnetic Cannon using ATP-EMTP and ATPDraw

Main Article Content

José Manuel Aller
Juan José Cordero Cantos
Pedro José León Rojas
Jhonny Rengifo

Abstract

This study presents a computational model of an electromagnetic cannon developed using the ATP/EMTP simulation tool and its graphical interface, ATPDraw. The system features a cylindrical metallic armature that traverses multiple stages of circular coils. Employing the Voltage Behind Reactance (VBR) methodology, each coil is modeled as a dynamic equivalent circuit comprising a resistance, an inductance, and an electromotive force source. The model parameters are dynamically updated at each simulation time step based on the armature’s motion. The coils are energized by pre-charged capacitors and connected through thyristors, which are triggered at specific positions of the moving armature. The model’s validity is corroborated by experimental data reported in the literature, confirming the accuracy and robustness of the proposed approach. In addition to supporting the design of electromagnetic cannons, this work provides a methodological foundation for future research and practical applications in this domain.

Article Details

Section
Scientific Paper

References

K. McKinney and P. Mongeau, “Multiple stage pulsed induction acceleration,” IEEE Transactions on Magnetics, vol. 20, no. 2, pp. 239–242, Mar. 1984. [Online]. Available: https://doi.org/10.1109/TMAG.1984.1063089

I. McNab, “Early electric gun research,” IEEE Transactions on Magnetics, vol. 35, no. 1, pp. 250–261, 1999. [Online]. Available: https://doi.org/10.1109/20.738413

E. N. Zapico, G. J. Torresán, and R. J. Garay, “Análisis estructural preliminar de un nanosatélite lanzado por cañón electromagnético,” in Mecánica Computacional, vol. XXIV, no. 12, Córdoba, Argentina, Nov. 2005, pp. 2075–2085. [Online]. Available: https://upsalesiana.ec/ing34ar10r3

J. Schroeder, J. Gully, and M. Driga, “Electromagnetic launchers for space applications,” IEEE Transactions on Magnetics, vol. 25, no. 1, pp. 504–507, 1989. [Online]. Available: https://doi.org/10.1109/20.22590

X. Niu, K. Liu, Y. Zhang, G. Xiao, and Y. Gong, “Multiobjective optimization of multistage synchronous induction coilgun based on nsga-ii,” IEEE Transactions on Plasma Science, vol. 45, no. 7, pp. 1622–1628, Jul. 2017. [Online]. Available: https://doi.org/10.1109/TPS.2017.2706522

X. Niu, W. Li, and J. Feng, “Nonparametric modeling and parameter optimization of multistage synchronous induction coilgun,” IEEE Transactions on Plasma Science, vol. 47, no. 7, pp. 3246–3255, Jul. 2019. [Online]. Available: https://doi.org/10.1109/TPS.2019.2918157

X. Niu, L. Chen, Y. An, and Y. Hu, “Research on critical trigger criterion of multistage synchronous induction coilgun,” IEEE Transactions on Plasma Science, vol. 51, no. 9, pp. 2667–2675, Sep. 2023. [Online]. Available: https://doi.org/10.1109/TPS.2023.3306329

L. Wang, J. Jatskevich, and S. D. Pekarek, “Modeling of induction machines using a voltage-behind-reactance formulation,” IEEE Transactions on Energy Conversion, vol. 23, no. 2, pp. 382–392, Jun. 2008. [Online]. Available: https://doi.org/10.1109/TEC.2008.918601

J. M. Aller, J. A. Restrepo, and J. C. Viola, “Voltage behind reactance model of induction machines using atpdraw and models,” in 2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM). IEEE, Oct. 2021. [Online]. Available: http://doi.org/10.1109/ETCM53643.2021.9590817

H. K. Høidalen, L. Prikler, and J. Hall, “Atpdraw-graphical preprocessor to atp, windows version,” in Proceedings of International Conference on Power Systems Transients, IPST, 1999, pp. 20–24. [Online]. Available: https://upsalesiana.ec/ing34ar10r10

L. Shoubao, R. Jiangjun, P. Ying, Z. Yujiao, and Z. Yadong, “Improvement of current filament method and its application in performance analysis of induction coil gun,” IEEE Transactions on Plasma Science, vol. 39, no. 1, pp. 382–389, Jan. 2011. [Online]. Available: http://doi.org/10.1109/TPS.2010.2047276

D. C. White, Electromagnetic energy conversion. Wiley, 1959. [Online]. Available:

https://upsalesiana.ec/ing34ar10r12

J. M. Aller, “Máquinas eléctricas rotativas: Introducción a la teoría general,” Editorial Equinoccio, 2006. [Online]. Available: https://upsalesiana.ec/ing34ar10r13

J. M. Aller, J. A. Restrepo, J. C. Viola, and J. R. Mayor, “Simplified voltage behind reactance model for the six-phase open-end salient pole pmsm,” in 2020 International Conference on Electrical Machines (ICEM). IEEE, Aug. 2020, pp. 2216–2221. [Online]. Available: https://doi.org/10.1109/ICEM49940.2020.9270701

Wikipedia. (2020, Apr.) Coefficient of friction. Wikipedia, the free encyclopedia. Accessed: 2025-06-12. [Online]. Available: https://upsalesiana.ec/ing34ar10r15

W. G. Hurley, M. C. Duffy, J. Zhang, I. Lope, B. Kunz, and W. H. Wolfle, “A unified approach to the calculation of self- and mutualinductance for coaxial coils in air,” IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6155–6162, Nov. 2015. [Online]. Available: http://doi.org/10.1109/TPEL.2015.2413493

G. Kron, A short course in tensor analysis for electrical engineers, I. Dover Publications, Ed. CONSTABLE and CO, LTD, 1959. [Online]. Available: https://upsalesiana.ec/ing34ar10r17

E. Rosa and F. Grover, Formulas and tables for the calculation of mutual and self-inductance. US Government Printing Office, 1912. [Online]. Available: https://upsalesiana.ec/ing34ar10r18

R. Weaver, Geometric Mean Distance - Its

Derivation and Application in Inductance Calculations.

Electronbunker.ca, 06 2016. [Online].

Available: https://upsalesiana.ec/ing34ar10r19