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Abstract

This paper analyses Land Use and Land Cover (LULC) change trends in the Llanganates-Sangay Connectivity Corri-
dor (CELS) from 2018 to 2022 and predicts trends through 2030. MapBiomas LULC maps reveals annual change rates
(2018–2022) of -0.37%/year (-1147.33 ha) for Forest Formation, -1.17%/year (-30.01 ha) for Non-Forest Natural Forma-
tion, 2.21%/year (906.19 ha) for Agriculture and Livestock Areas, 8.50%/year (250.84 ha) for Non-Vegetated Areas,
and 0.17%/year (30.31 ha) for Water Bodies. The higher annual change rate inside Forest Formation is -0.58%/year
(-990.35 ha) occurring in areas not designated under any conservation status. Projections for 2030 were made using
the MOLUSCE tool, combining an Artificial Neural Network (ANN) model with Cellular Automata simulations. The
ANN model was trained on five explanatory variables and LULC maps from 2018 and 2020, achieving a training
error of 8.46%. Predictive accuracy was assessed by comparing the simulated 2022 LULC map with the 2022 Map-
Biomas map, resulting in a Kappa coefficient of 0.95, indicating excellent predictive accuracy. Additionally, LULC
simulations from 2022 to 2030 predict annual rates of change of –0.27%/year (-1628.97 ha) for Forest Formation, -
1.39%/year (-63.49 ha) for Non-Forest Natural Formation, 1.92%/year (1778.26 ha) for Agriculture and Livestock
Areas, 0.97%/year (30.38 ha) for Non-Vegetated Areas, and 0.63%/year (-146.18 ha) for Water Bodies. The findings
show that annual rates of deforestation will remain low and protected areas will have less deforestation than non-
protected areas.
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Resumen

Este estudio analiza las tendencias de cambio de uso y cobertura del suelo (LULC) en el Corredor de Conectividad
Llanganates-Sangay (CELS) durante el período 2018-2022 y predice tendencias hasta 2030. Los mapas de LULC de
MapBiomas revelan tasas anuales de cambio (2018-2022) de -0,37%/año (-1147.33 ha) para Formación de Bosque,
-1,17%/año (-30,01 ha) para Formaciones Naturales No Boscosas, 2,21%/año (906.19 ha) para Áreas de Agricultura
y Ganadería, 8,50%/año (250,84 ha) para Áreas sin Vegetación y 0,17%/año (30,31 ha) para Cuerpos de Agua. La
mayor tasa de cambio anual dentro de Formación de Bosque, -0,58%/año (-990,35 ha), ocurre en áreas no protegi-
das. Las proyecciones para 2030 se realizaron utilizando la herramienta MOLUSCE, que combina una Red Neuronal
Artificial (ANN) con simulaciones de Autómatas Celulares. La ANN fue entrenada con cinco variables explicatorias
y mapas de LULC de 2018 y 2020, logrando un error de entrenamiento de 8,46%. La precisión predictiva se evaluó
comparando el mapa simulado de LULC para 2022 con el mapa de MapBiomas 2022, obteniendo un coeficiente Kap-
pa de 0,95, lo que indica una excelente precisión. Además, las simulaciones de LULC para 2022-2030 predicen tasas
anuales de cambio de -0,27%/año (-1628,97 ha) para Formación de Bosque, -1,39%/año (-63,49 ha) para Formaciones
Naturales No Boscosas, 1,92%/año (1778,26 ha) para Áreas de Agricultura y Ganadería, 0,97%/año (30,38 ha) para
Áreas No Vegetadas y 0,63%/año (-146,18 ha) para Cuerpos de Agua. Los resultados sugieren que las tasas anuales
de deforestación se mantendrán bajas y que las áreas protegidas tendrán menos deforestación que las áreas que no
están protegidas.

Palabras clave: Deforestación, CELS, MOLUSCE, cambios de cobertura y uso de suelo.
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Analysis and prediction of land use/land cover change in the Llanganates-Sangay
Connectivity Corridor by 2030

1 Introduction

Ecuador is known worldwide as one of the 13 most
biodiverse countries in the world, but it faces a gro-
wing threat, as between 1990 and 2000 the country
lost 15% of its native forest area, leading to one of
the highest deforestation rates in Latin America (Ri-
vas et al., 2024). This dynamic mainly affects the
Amazon, considered one of the most biodiverse re-
gions on the planet (Mainville et al., 2006). Forest
losses compromise the country’s capacity to keep
global warming below 1.5◦C, since this region sto-
res between 367 and 733 Gt of CO2 in its vegetation
and soils (Vergara et al., 2022).

Deforestation and land use change have caused
an accelerated fragmentation of natural vegetation
areas in the Andes and the Ecuadorian Amazon.
Between 1990 and 2018, with the main affected
areas being the buffer zones of protected areas,
25.5% were lost in their surroundings (Kleemann
et al., 2022). These dynamics compromise the ef-
fectiveness of conservation strategies, even in areas
with high levels of protection. Fragmentation af-
fects the provision of essential ecosystem services,
such as water regulation, carbon storage and biodi-
versity conservation.

In this context, it is crucial to implement com-
prehensive measures that include forest conserva-
tion and sustainable management of buffer zones
(Vergara et al., 2022). Nowadays, tools based on
remote sensing and artificial intelligence allow pro-
gress in the analysis and prediction of LULC chan-
ges, both spatially and temporally. Classification
techniques such as Random Forest (RF) and Sup-
port Vector Machines (SVM) have demonstrated
high accuracy in the generation of land use and
land cover mapping, facilitating the observation
and analysis of deforestation processes and LULC
transformation (Admas, 2024; Elagouz et al., 2020;
Lukas et al., 2023; Tikuye et al., 2023).

In this study, we also used the QGIS add-on
MOLUSCE (Modules for Land Use Change Eva-
luation), which combines spatial and temporal data
with advanced modeling techniques, such as cellu-
lar automata (CA) and artificial neural networks
(ANN). This tool allows simulating and predicting
changes in land use and land cover. MOLUSCE has
demonstrated its effectiveness in various contexts

(Muhammad et al., 2022; Talukdar et al., 2020). The
Llanganates-Sangay Connectivity Corridor (CELS)
is a critical ecological link, connecting Llanganates
National Park in the north, Sangay National Park
in the south and several conservation areas recog-
nized under diverse schemes within its boundaries.
The CELS encompasses a significant ecotone, brid-
ging the Andean highlands and the Amazon basin,
and playing a pivotal role in preserving the region’s
unique ecosystems (Ríos-Alvear et al., 2024).

Relevant scientific research has been developed
for more than 150 years in this area, with important
results, such as the identification of 178 species of
orchids and nearly 200 species of endemic plants,
surpassing even the Galapagos Islands in botani-
cal diversity (Jost, 2004). It is also home to nearly
700 species of birds and 285 species of reptiles and
amphibians, surpassing the records of Yasuní Na-
tional Park (INABIO et al., 2023). However, human
activities have reshaped this area. For instance, late
colonization processes in cities like Baños and Puyo,
driving human settlement and economic activities
such as tourism and agriculture, have significantly
influenced land use changes in the region, leading
to the conversion of natural areas into agricultural
and urban spaces (Herrera and Rodríguez, 2016).
Deforestation and LULC change have increased
landscape fragmentation and significantly reduced
ecosystem connectivity, putting the survival of spe-
cies and the provision of ecosystem services at risk
(Reyes-Puig et al., 2023).

This study aims to determine land use and land
cover changes in the Llanganates-Sangay Connec-
tivity Corridor (CELS) from 2018 to 2022 and pro-
ject trends up to 2030 using the MOLUSCE tool. It
focuses on quantifying forest cover loss during the
analysis period and forecasting future scenarios of
change in LULC, based on changes recorded bet-
ween 2018 and 2022.

2 Materials and Methods

2.1 Study area
The Llanganates-Sangay Connectivity Corridor
(CELS) spans the provinces of Tungurahua, Pas-
taza, and Morona Santiago (Figure 1) and encom-
passes 92,148 hectares (Viteri-Basso et al., 2024).
The corridor serves as an ecological link, connec-
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ting Llanganates National Park in the north with
Sangay National Park in the south. It forms a key
transition zone between the eastern Andes and the
western Amazon. This area was designated as a
“Gift to the Earth” by WWF in 2002, recognizing its
global importance for biodiversity. The CELS was
officially recognized as a Connectivity Corridor in
2023 by Ecuador’s Ministry of Environment and
Natural Resources (Ríos-Alvear et al., 2024).

The CELS ranges in altitude from 760 and 3812
meters above sea level and has a rainy tropical cli-

mate (Viteri-Basso et al., 2024), with annual preci-
pitation between 2500 and 5500 mm and tempe-
ratures ranging between 9 and 22◦C. These clima-
tic and altitudinal variations favor the formation of
habitats that foster exceptional biodiversity (Gaglio
et al., 2017; Ríos-Alvear et al., 2024). This area plays
an important role in providing water resources for
the Pastaza and Napo River basins that are vital for
local communities, agricultural and tourism activi-
ties, and hydroelectric energy generation (Gaglio
et al., 2017).

Figure 1. Location map of the CELS.

The primary economic activities in this area in-
clude agriculture, cattle ranching, tourism, fish far-
ming, and timber production. While these activities
are critical to the local economy, they have signifi-
cantly impacted ecosystems, leading to deforesta-
tion and habitat fragmentation (Delgado Fernández
et al., 2023).

Over the past two decades, various conser-
vation initiatives have been implemented in this
area, led by local, national, and international or-
ganizations such as EcoMinga Foundation, local
governments, the Ministry of Environment, Wa-
ter and Ecological Transition of Ecuador (MAA-
TE), WWF, among others. Ecotourism initiati-
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ves within CELS can be found in the geoportal
https://geocels-upsq.hub.arcgis.com/

Conservation strategies have included, for ins-
tance, the establishment of officially recognized pro-
tected areas, the management of privately conser-
ved areas not officially recognized but designated
for ecosystem conservation, and collaboration with
local communities to promote sustainable land ma-
nagement practices. The latter includes supporting
the adoption of agroecological practices to prevent
soil degradation, maintain fertility, and curb agri-
cultural frontier expansion (Aneloa et al., 2024). Ad-
ditionally, nature-based tourism has been boosted
as a sustainable development strategy to enhance
local livelihoods while preserving natural ecosys-
tems.

Despite these efforts, there remains the need to
further integrate local communities into sustainable
management strategies that effectively balance so-
cioeconomic development with environmental con-
servation (Alvarado, 2020; Aneloa et al., 2024).

2.2 Data collection
Satellite imagery is essential for monitoring rainfall,
deforestation, land use changes, and environmen-
tal impacts (Perea-Ardila et al., 2021). However, the
high cloud cover in the Ecuadorian Amazon, lo-
cated within the intertropical convergence zone, li-
mits spatial data availability (Heredia-R et al., 2021).
To address this, MapBiomas Collection 1.0 (MapBio-
mas, 2024) was chosen for its extensive temporal
coverage (1985–2022) and ability to avoid a cloud
cover category, which occupies nearly 10% of the

CELS in other datasets. This improves differentia-
tion between land use and land cover classes.

The MapBiomas 1.0 Collection provides annual
land use and land cover (LULC) maps for Ecuador
at a 30-meter resolution. These maps are genera-
ted through supervised classification using the Ran-
dom Forest algorithm applied at the pixel level, ba-
sed on satellite image mosaics from the Landsat se-
ries 4, 5, 7, 8, and 9. It uses a standardized legend tai-
lored to Ecuador’s specific land cover, dividing land
into five main categories: Forest Formation, Non-
Forest Natural Formation, Agriculture and Lives-
tock Areas, Non-Vegetated Areas, and Water Bodies
(Table 1). Natural forests fall under Forest Forma-
tion, while forest plantations, including silviculture,
are classified as Agriculture and Livestock Areas.
For detailed LULC category definitions, see Borja
et al. (2023).

2.3 LULC change analysis and prediction
by 2030

To achieve the objectives of this study, LULC maps
from 2018 to 2022 were obtained from the MapBio-
mas platform and relevant explanatory variables re-
lated to LULC changes were generated using offi-
cial data sources. The LULC maps from 2018 to 2022
were used to perform the LULC change analysis.
Additionally, the LULC maps from 2018, 2020, and
2022, along with explanatory variables maps, we-
re used to develop and validate a model designed
to predict LULC changes through simulations up
to 2030. The LULC change analysis, modeling, va-
lidation, and simulations were performed using the
MOLUSCE tool (Figure 2).

Table 1. Classification of categories by land uses and land covers.

N◦ Categories Land Use/ Land Cover
1 Forest formation Forest, open forest, mangrove and floodable forest.

2
Non-forest natural

formation
Non-Forest wetland, grassland, rocky outcrop,

other non-forest formations
3 Agriculture and Livestock Areas Silviculture, Mosaic of cropland and pasture
4 Non-Vegetated Areas Mining, urban areas, other non-vegetated areas
5 Water Bodies Rivers, lakes, glaciers, aquaculture
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2.3.1 LULC changes analysis

To describe LULC changes from 2018 to 2022, Map-
Biomas LULC maps were analyzed at one-year in-
tervals. This analysis enabled the identification of
historical LULC changes, detecting trends, and cal-
culating LULC’s annual rate of change. MOLUSCE
tool was used to compute the transition matrix from
2018 to 2022, and the annual rate of change was cal-
culated using Equation 1 (Puyravaud, 2003), origi-
nally proposed for deforestation studies but appli-
cable to any LULC change due to its general formu-
lation (Kouassi et al., 2021). Where q is the annual
rate of change (1/year or%/year), A1 is the LULC
area at year t1 and A2 is the LULC area at year t2,
with t2 > t1.

q =

(
A2

A1

) 1
t2 − t1 −1 (1)

2.3.2 MOLUSCE

The MOLUSCE tool was used to analyze and simu-
late LULC changes up to 2030. This QGIS plugin
allows for calculating transition matrices and incor-
porates widely accepted algorithms for modeling
and simulations, such as Artificial Neural Networks
(ANN), Cellular Automata (CA), and the Kappa
coefficient for validating the accuracy; this index
ranges from 0 to 1, which is interpreted as poor and
almost perfect, respectively (Gaur and Singh, 2023;
Jain, 2024; Mollocana Lara and Paredes Obando,
2024). These algorithms have been widely applied
in LULC modeling studies, such as those conducted
by Souza et al. (2020); Xu et al. (2024).

ANN learns spatial patterns and relationships
between historical data and explanatory variables,
modeling the transition potential and CA simulates
dynamic spatial processes by applying transition
rules based on neighborhood conditions (Alipbeki
et al., 2024; Tenorio et al., 2022).

Figure 2. Methodology diagram for LULC analysis and prediction.
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To predict LULC maps using the MOLUSCE
tool, it is necessary to collect cartographic infor-
mation representing explanatory variables related
to LULC changes. This allows the Artificial Neu-
ral Network (ANN) algorithm within MOLUSCE
to consider these variables during training, replica-

ting learned behaviors and identifying spatial pat-
terns (Al Mazroa et al., 2024). Five explanatory va-
riables in raster format related to LULC changes
were generated and integrated into the MOLUSCE
tool. These variables are shown in Table 2.

Table 2. Definitions of explanatory variables for ANN training.

Variable Definition
Proximity
to roads

Raster representing the Euclidean distance in meters from each
pixel to the nearest road

Proximity
to settlements

Raster representing the Euclidean distance in meters from each
pixel to urban centers

Protection
level of

natural areas

Raster representing the protection level of natural areas against natural
cover removal on a scale from 0 to 5, where 0 indicates non-protected

areas and 5 represents the highest level of protection
Altitude Raster showing the height above sea level (m.a.s.l) for each pixel

Slope Raster indicating the steepness or incline of the land for each pixel in degrees

Previous studies have identified proximity to
roads and urban centers as key drivers of LULC
change, as areas closer to these features tend to ex-
perience higher rates of natural cover loss due to
increased accessibility and human activity (Gaur
and Singh, 2023). Vegetation closer to roads and po-
pulated areas is more susceptible to removal due
to the expansion of the agricultural frontier and
the creation of pastures for livestock (Fischer et al.,
2021).

Topographic features such as elevation and slo-
pe play an important role in determining the suita-
bility of land for agriculture and development, as
human activities are restricted or face difficulties in
high-altitude or steep-slope areas (Xu et al., 2024).
A significant portion of CELS is under some form
of legal conservation, which acts as a major barrier
against the advance of anthropogenic activities.

These explanatory variables are commonly used
in LULC modeling because they can be obtained
from accessible cartographic sources. In contrast,
socioeconomic, law enforcement, or policy factors
are less used due to data scarcity, complexity of
spatial representation, and temporal mismatches.
Despite these limitations, several studies have de-
monstrated good modeling results using only to-
pographic and infrastructure variables, as seen in

Barbosa de Souza et al. (2023); Alipbeki et al. (2024);
Hasan et al. (2020).

While many studies have explored how protec-
ted areas help prevent deforestation, fewer studies
have integrated protection levels as a variable in
land use change models (Kim and Anand, 2021).
Given that the CELS includes various types of pro-
tection and conservation areas, the protection level
was integrated into the analysis to assess its influen-
ce on LULC dynamics. This level was determined
through surveys conducted with three experts who
were asked to evaluate, on a scale from 1 to 5, the ef-
fectiveness of different protection categories within
the CELS in preventing deforestation. In this scale, 1
represents a low level of protection, while 5 indica-
tes a high level of protection against deforestation.

For modelling and prediction purposes, a
transition matrix from 2018 to 2020 (two-year inter-
val) was calculated using the MOLUSCE tool. This
matrix was used by MOLUSCE to create a change
map, which, together with the explanatory variable
rasters, served as inputs for the training of the ANN
model that iteratively assesses its prediction accu-
racy and adjusts its structure to minimize errors.
On the other hand, CA generates simulations based
on the trained ANN model (Mustafa et al., 2021).
In this study, each iteration of the CA algorithm
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produces a predicted LULC map two years in ad-
vance. The first iteration generated a LULC map
for 2022, which was compared to the actual 2022
LULC map from MapBiomas to validate the mo-
del. Subsequently, four additional iterations were
performed to produce a predicted LULC map for
2030. A transition matrix from the predicted LULC
map for 2022 to that of 2030 was then calculated to
analyze LULC changes and estimate annual rates of
change using Equation 1.

After training the ANN model and generating
a predicted LULC map for 2022 using the CA al-
gorithm, it is essential to verify that the predic-
tions made with the Cellular Automata algorithm
and the ANN model are reliable enough to support
decision-making (Bao Pham et al., 2024). To ensu-
re this, the model was validated by comparing the
predicted LULC map for 2022 generated by the al-
gorithm with the actual LULC map from MapBio-
mas for the same year. The comparison was per-
formed using Cohen’s Kappa coefficient, a widely
used metric for spatial data comparison (Molloca-
na Lara et al., 2021). MOLUSCE allows for multi-
ple iterations of Kappa coefficient calculations, re-
ducing errors caused by random sampling. The in-
terpretation of the Kappa coefficient follows the cri-
teria established in Santos et al. (2020).

3 Results and Discussion

3.1 LULC Changes Analysis from 2018 to
2022

The dynamics of land use and land cover change
in the Llanganates-Sangay Connectivity Corridor
(CELS) between 2018 and 2022 (Figure 3), shows the
gradual decrease of Forest Formation areas stands
out, especially in the CELS buffer zones. This sug-
gests a process of deforestation, probably associa-
ted with human activities such as agricultural and
livestock expansion, since this type of use shows a
notable increase in the same area, indicating that the
areas peripheral to the CELS have greater anthropic
pressure. This change implies a significant trans-
formation of forest ecosystems into more intensive
uses.

The gradual loss of Forest Formation suggests
an increase in landscape fragmentation, which af-
fects ecological connectivity between montane and
Amazonian ecosystems (Jokisch and Lair, 2002).
Water Bodies and Non-Vegetated Areas remain re-
latively constant, with no perceptible changes in
their extension, while Non-Forest Natural Forma-
tions show minor variations, which may be related
to degradation or regeneration processes.

Figure 3. MapBiomas LULC maps from 2018 to 2022 (MapBiomas, 2024).
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Table 3 and Figure 4 highlight the changes in
LULC in CELS between 2018 and 2022, quantifying
the transformation of the landscape. The Forest For-
mation category experienced an accumulated loss
of 1,147.33 hectares, with an average annual rate of
change of -0.37%, and its maximum value in 2021-
2022 with -515.03 hectares (-0.67%/year).

This dynamic of decrease in the categories rela-
ted to natural vegetation confirms that agriculture
is the main driver of land use change, contributing
significantly to deforestation and pressure on fo-
rest ecosystems that lose their ecological function
in maintaining the diversity and connectivity of
the landscape. Agricultural expansion, in turn, res-

ponds to economic stability that produces short-
term fluctuations in the market.

Non-Vegetated Areas increased by 250.84 hecta-
res (+8.50%/year), showing their greatest growth
between 2021-2022 (+107.31 ha, +13.52%/year).
This increase may reflect soil degradation processes
related to erosion, urbanization and land abandon-
ment, which alter the functionality of the corridor
and generate a growing threat to natural ecosys-
tems; this trend is consistent with other studies
carried out in the Ecuadorian Amazon (Gutiérrez
et al., 2016; Calvas et al., 2024; Viteri-Basso et al.,
2024).

Table 3. CELS Land Use/Land Cover changes from 2018 to 2022.

Categories Units 2018 to 2019 2019 to 2020 2020 to 2021 2021 to 2022 2018 to 2022
ha -266.94 -263.28 -102.09 -515.03 -1147.33

Forest Formation
q -0.34 -0.34 -0.13 -0.67 -0.37
ha -8.96 -18.84 -7.32 5.12 -30.01Non-Forest

Natural Formation q -1.37 -2.92 -1.17 0.83 -1.17
ha 223.39 234.64 149.02 299.14 906.19Agriculture and

Livestock Areas q 2.26 2.32 1.44 2.85 2.21
ha 49.49 41.53 52.51 107.31 250.84Non-Vegetated

Areas q 7.61 5.94 7.09 13.52 8.50
ha 3.02 5.95 -92.12 103.46 20.31

Water bodies
q 0.10 0.20 -3.09 3.58 0.17

*Negative symbol represents area reduction; ha represents change in hectares and q represents annual rate of change in%/year.

For their part, Water Bodies showed significant
fluctuations, with losses in 2020-2021 (-3.09%/year)
and a partial recovery in 2021-2022 (+3.58%/year).
These dynamics, probably influenced by seasonal
variations and sedimentation, require continuous
hydrological monitoring to understand their causes
and effects on the corridor.

Table 4 corresponds to the LULC transition ma-
trix from 2018 to 2022. 96.93% (75577.18 ha) of the
area occupied by the Forest Formation category
remained stable, 2.49% changed to Agriculture and
Livestock Areas and 0.15% to Non-Vegetated Areas.
This reflects the fact that agricultural expansion is
the main driver of deforestation.

The Non-Forest Natural Formation category has
a permanence of 88.57% (578.7 ha), 7.55% chan-
ged to Forest Formation and 3.19% to Agriculture
and Livestock Areas. Contrary to the above, 87.17%

(8629.23 ha) remained as Agriculture and Lives-
tock areas. They expanded by 1058.96 ha (10,7%)
from Forest Formation and by 100.9 ha (1,02%) from
Non-Vegetated Areas. This confirms that agricultu-
re is the main transformation factor of the lands-
cape of the non-vegetated areas 610,72 ha (93,95%)
remained as non-vegetated areas, an increase of
120.57 ha (0,15%) from Forest Formation and 64.49
ha (2,17%) from Water Bodies, which could be asso-
ciated with degradation and urbanization proces-
ses.

The category of water bodies has a permanence:
2589.5 ha (87,04%) remained as water bodies, 64.49
ha (2,17%) were reduced to non-vegetated areas
and 130.54 ha (4,39%) to forest formation, possibly
due to changes in water dynamics, sedimentation,
seasonal timing of the Landsat satellite images used
in the MapBiomas classification or inherent algo-
rithmic errors.
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Figure 4. Evolution of annual LULC change rates (q%/year) at one-year intervals from 2018 to 2022.

The transition matrix shows that deforestation
and conversion to agricultural land are the predo-
minant dynamics in the CELS, driven by agricul-
tural expansion. Additionally, the increase in non-
vegetated areas reflects degradation processes that
could intensify if sustainable management measu-
res are not implemented.

Since Forest Formation annual rates of change
are low, observing its area decrease (deforestation)
is difficult. To improve this understanding, Figure 5
highlights the differences in Forest Formation chan-
ges between 2018 and 2019, as well as between 2018
and 2022.

3.2 Explanatory variables for 2030 LULC
prediction

The rasters representing the explanatory variables
for the prediction model are depicted in Figure 6
and Figure 7. Rasters proximity to roads, proximity
to settlements, altitude and slope were generated
from Military Geographic Institute (IGM) official
information. The raster level of protection was ge-
nerated based on information from the Ministry
of Environment, Water, and Ecological Transition

(MAATE), a conservation NGO supporting private
areas in the CELS, and the expert opinions about
the effective level of protection of different kinds of
protected areas.

Not all conservation areas have the same level of
protection against deforestation and the type of con-
servation areas varies significantly. Some are part of
the National System of Protected Areas (SNAP), re-
gulated by the Organic Environmental Code, which
provides a robust legal framework that supports
the conservation of these areas, and they have grea-
ter financial and technical capacity, which increases
their level of protection. However, their effective-
ness can be compromised by extractive activities
permitted under legal exceptions, such as mining
exploitation in certain protected areas.

Areas managed by local governments (GAD)
have fewer resources and technical support, which
limits their ability to implement effective conser-
vation measures. In the case of privately owned
areas, in some cases they are successful conserva-
tion models, which depend mainly on the commit-
ment of the owners and lack a consolidated mo-
nitoring framework (Mendoza-Montesdeoca et al.,
2022; Mestanza-Ramón et al., 2020).
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Table 4. Transition matrix for LULC between 2018 and 2022.

2018 - 2022
Period

Forest
formation

Non-forest
natural

formation

Agriculture
and

Livestock
areas

Non-
Vegetated

areas

Water
bodies

Total
2018

Forest
formation

75577.18
(96.93%)

23.6
(0.03%)

1941.1
(2.49%)

120.57
(0.15%)

311.3
(0.4%)

77973.75
(100%)

Non-forest
natural

formation

49.31
(7.55%)

578.7
(88.57%)

20.86
(3.19%)

4.21
(0.64%)

0.27
(0.04%)

653.34
(100%)

Agriculture
and

Livestock
areas

1058.96
(10.7%)

19.03
(0.19%)

8629.23
(87.17%)

100.9
(1.02%)

91.48
(0.92%)

9899.6
(100%)

Non-vegetated
areas

10.43
(1.6%)

0.37
(0.06%)

25.71
(3.95%)

610.72
(93.95%)

2.84
(0.44%)

650.05
(100%)

Water
bodies

130.54
(4.39%)

1.65
(0.06%)

188.9
(6.35%)

64.49
(2.17%)

2589.5
(87.04%)

2975.09
(100%)

Total 2022 76826.42 623.34 10805.80 900.89 2995.3
Variation
from 2018

to 2022
-1147.33 -30.01 906.19 250.84 20.31

*The changes are expressed in hectares, with percentages in parentheses. Positive variation values indicate area
gains, and negative values indicate losses.

Figure 5. Deforestation represented as the transition from the Forest Formation class to any other LULC category between
2018–2019 (left) and 2018–2022 (right).

To account for these differences, three experts
were polled to assess the level of protection against
deforestation across various types of conservation
areas. Selected experts have at least five years of
experience in conservation and come from different
institutions across Ecuador that have worked on of-
ficially recognized connectivity corridors (MAATE
and two different NGO), providing varied perspec-
tives and a broader understanding of conservation

practices and challenges throughout the country.
The results are presented in Table 5. Each protec-
tion level was rated on a scale of 1-5, with a value
of 0 used for non-protected areas.

The importance of incorporating the protection
level of a protected area into the model (Barreto
et al., 2017; Pessôa et al., 2023) is demonstrated in
Table 6, which shows its significant influence on
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deforestation rates. The annual change rates were
calculated using the Equation 1. As expected, areas
without any form of protection (protection level 0)
experience the highest deforestation rates, followed
by the Provincial Sustainable Development Ecologi-
cal Area of Pastaza Province GAD (AEDSP), where

sustainable productive activities are permitted (pro-
tection level 2). In contrast, protected areas such as
ACMUS, APH, and Protective Forests (protection
level 3) exhibit the lowest annual deforestation ra-
tes, followed by private protected areas (protection
level 1).

Figure 6. Proximity to settlements, proximity to roads and elevation explanatory variables.

Figure 7. Protection level and slope explanatory variables.

Private protected areas exhibit a notable diffe-
rence between the protection level reported by ex-
perts and the low deforestation rates calculated in
this analysis. Two of the interviewed experts ba-
se their opinions on the lack of legal guarantees
for long-term protection, as conservation status in
private areas can change depending on the ow-
ner’s vision. However, these areas often achieve
higher conservation outcomes due to their speci-

fic focus, adaptability, and management by non-
governmental organizations, families, or consortia,
which implement rigorous conservation practices
and reduce direct anthropogenic pressure. Despite
these advantages, challenges persist, including ten-
sions with local communities over restricted access
to traditional resources and the vulnerability of con-
servation approaches to changes in ownership prio-
rities (Iñiguez-Gallardo et al., 2021).

22
LA GRANJA: Revista de Ciencias de la Vida 41(1) 2025:11-31.

©2025, Universidad Politécnica Salesiana, Ecuador.



Analysis and prediction of land use/land cover change in the Llanganates-Sangay
Connectivity Corridor by 2030

3.3 Artificial Neural Network model trai-
ning

The ANN algorithm in the MOLUSCE tool was con-
figured with a neighborhood size of 2 pixels and a
learning rate of 0.002. Additionally, the momentum
was set to 0.002 when these parameters help to sta-

bilize learning and accelerate convergence. Figure
8 displays the learning curve illustrating the trai-
ning process of the algorithm over 2000 iterations,
with each iteration using 40,000 stratified sampling
points to train and validate the neural network.
The minimum error achieved by the neural network
was 8.46%.

Table 5. Results of a survey assessing the level of protection against deforestation, with 1 representing low level of protection and
5 high level of protection.

Type of conservation area Protection level
Grade

1a
Grade

2b
Grade

3a
Rounded
average

Private conservation areas 1 1 2 1
GAD conservation areas (ACMUS) 3 4 3 3

Water Protection Areas (APH) 3 3 4 3
Socio Bosque Program 4 4 3 4

Provincial Sustainable Development
Ecological Area of Pastaza (AEDSP) 2 2 2 2

Protective Forests and Vegetation 1 4 4 3
National Parks (part of the SNAP) 5 5 5 5

Private Protected Areas (part of the SNAP) 3 5 5 4
aSpecialists in Conservation- NGO.
bSpecialist in Protected Areas– MAATE.

Table 6. Forest Formation annual rate of change according to the level of protection against deforestation of protected areas from
2018 to 2022.

Level of
protection

Forest
formation 2018

Forest
formation 2022 Change 2018- 2022

ha ha ha q (%/año)
0 42952.59 41962.24 -990.35 -0.58
1 3730.25 3727.59 -2.65 -0.02
2 13003.95 12889.33 -114.62 -0.22
3 9269.31 9264.46 -4.85 -0.01
4 8911.26 8876.59 -34.67 -0.10
5 106.39 106.21 -0.18 -0.04

Total 77973.75 76826.42 -1147.33 -0.37%
*Negative values indicate area reduction.

3.4 Cellular Automata simulation
The predicted LULC maps from 2022 to 2030, at
two-year intervals, are illustrated in Figure 9, while
Table 7 details the transition for LULC predictions
between 2022 and 2030 in hectares, with percenta-
ges in parentheses. Positive variation values indica-
te area gains, negative values indicate losses. Addi-

tionally, Figure 9 shows the evolution of predicted
annual LULC change rates (%/year) at two-year in-
tervals from 2022 to 2030 while Table 7 presents the
corresponding transition matrix. In the other hand,
Figure 10 shows the predicted future trends and va-
riations in annual change rates of LULC categories
from 2022 to 2030.
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Figure 8. Artificial Neural Network learning curve.

Forest Formation, the largest land use, shows an
area decrease (negative change rates), from 77025.39
ha in 2022 to 75396.42 ha in 2030, indicating ongoing
but low reduction in forest cover, likely due to defo-
restation (Souza et al., 2020). The conversion of fo-
rests into pastures, agricultural land, and infrastruc-
ture is a key driver of deforestation, causing effects
on ecosystems and climate. This process accelera-
tes biodiversity loss, disrupts water systems, and
releases stored carbon, intensifying climate change
and altering local and regional environmental con-
ditions (Kumar et al., 2022). Although most Forest
Formation areas (95.59%, 73628.13 ha) remained
intact in the simulation, 3.72% transitioned to Agri-
culture and Livestock Areas.
Similarly, 59.7% of Non-Forest Natural Formations
in 2022 persisted, while 21.04% shifted to agricultu-
re, indicating significant pressure on these ecosys-
tems due to agricultural growth (Table 7). Decline
in Non-Forest Natural Formation can lead to sig-
nificant ecological consequences, including biodi-

versity loss and ecosystem degradation. For ins-
tance, the reduction of natural wetlands has been
linked to decreased habitat quality and fragmenta-
tion, further exacerbating environmental degrada-
tion (Wilson et al., 2016).

Agriculture and Livestock Areas expand stea-
dily, from 10804.52 ha in 2022 to 12582.78 ha in 2030,
reflecting agricultural encroachment. Although
Agriculture and Livestock Areas remained predo-
minantly stable in the simulation (83.72%, 9,045.19
ha), 1412.07 ha transitioned to Forest Formation.
This shift may indicate the influence of conservation
efforts and initiatives implemented in the CELS,
such as promoting agroecological practices, which
can facilitate forest restoration (Knapp and Sciarret-
ta, 2023). Agriculture and Livestock Areas show po-
sitive but slightly deaccelerating change rates, indi-
cating a continuous increase in agricultural land, al-
beit at a slower pace over time.
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Figure 9. Predicted LULC maps from 2022 to 2030.

Table 7. Transition matrix for LULC predictions between 2022 and 2030.

2022 - 2030
Period

Forest
formation

Non-forest
natural

formation

Agriculture
and

Livestock
areas

Non-
Vegetated

areas

Water
bodies

Total
2022

73628.13 82.88 2866.5 97.52 350.37 77025.39Forest
formation (95.59%) (0.11%) (3.72%) (0.13%) (0.45%) (100%)

112.06 356.68 125.69 2.01 1.01 597.45Non-forest
natural

formation
(18.76%) (59.7%) (21.04%) (0.34%) (0.17%) (-100%)
1412.07 74.92 9045.19 130.45 141.88 10804.52Agriculture

and
Livestock

areas

(13.07%) (0.69%) (83.72%) (1.21%) (1.31%) (100%)
15.73 17.29 163.84 537.81 14.73 749.4Non-vegetated

areas (2.1%) (2.31%) (21.86%) (71.77%) (1.97%) (-100%)
228.42 2.2 381.56 41.99 2309.48 2963.65Water

bodies (7.71%) (0.07%) (12.87%) (1.42%) (77.93%) (100%)
Total 2030 75396.42 533.96 12582.78 809.77 2817.47

Variation from
2022 to 2030 -1628.97 -63.49 1778.26 60.38 -146.18

*The changes are expressed in hectares, with percentages in parentheses. Positive variation values indicate area gains, and
negative values indicate losses.

In contrast, Non-Vegetated Areas exhibit posi-
tive and increasing change rates, reflecting a gra-
dual expansion, likely associated with peri-urban

growth (Souza et al., 2020) and other anthropogenic
activity. This expansion could be also influenced by
landslides and the increase in exposed river sand-
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banks, which become visible because of decreases
in water bodies. Non-Vegetated Areas maintained
71.77% of their coverage, however, the conversion
of 163.84 ha into Agriculture and Livestock Areas
could be attributed to land reclamation and ecolo-
gical restoration efforts facilitating their transition
to productive agricultural landscapes (Zine et al.,
2024).

Water Bodies, while maintaining 77.93% stabi-
lity, experienced losses to both Forest Formation
and Agriculture and Livestock Areas, likely driven
by sedimentation processes and alterations in hy-
drological dynamics. Additionally, this trend may
reflect the influence of the input data used to train
the ANN, as the observed decline in Water Bodies
from 2018 to 2022 appears to have guided the mo-
del to predict similar reductions in future scenarios.

Further studies are needed to better understand the
drivers behind these changes and to assess whether
they represent temporary fluctuations, long-term
trends, or potential errors in the modeling process.
Figure 11 shows a comparison between the change
from Forest Formation to any other LULC category
between both periods 2022 - 2024 and 2022–2030.

3.5 Model validation
Using five iterations with 40,000 stratified sample
points, an average Kappa coefficient of 0.95 was
achieved, with stable values observed across all ite-
rations. This indicates an excellent agreement bet-
ween the predicted map and the 2022 MapBiomas
map, suggesting that the model performs consis-
tently and can be a useful tool in decision-making
processes.

Figure 10. Evolution of predicted annual LULC change rates (%/year) at two-year intervals from 2022 to 2030.

3.6 Study limitations
The main limitations of this study include the low
availability of satellite images due to the high cloud
cover present during the analysis period. For this
reason, land use and land cover maps generated by
MapBiomas were used. Although this tool uses ad-

vanced image filtering and correction techniques,
its cartography presents a margin of error with an
accuracy of 80%. Likewise, the use of the MOLUS-
CE tool, despite its robustness and frequent applica-
tion to generate trends, includes an associated mar-
gin of error, with a Kappa coefficient of 0.95.
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Figure 11. Predicted deforestation represented as the transition from the Forest Formation class to any other LULC category
between 2022- 2024 (left) and 2022–2030 (right).

The naturalistic approach of the article prioriti-
zed the analysis of changes in natural cover and the
different forms of conservation within the CELS.
Socioeconomic, policy, political, and resource avai-
lability factors were not included in the analysis,
due to the lack of readily available data and the
complexities associated with integrating these va-
riables into geospatial models. This represents an
opportunity to carry out complementary research
to address this limitation by incorporating data on
population growth, economic activities, policy en-
forcement, resource availability and protected area
management capacities to better capture the dyna-
mics influencing LULC changes.

Despite these limitations, the results presented
in this study reliably reflect the dynamics observed
in the CELS. The variables used are widely applied
in LULC modeling and the model was trained and
validated using different data sets, reaching a high
level of precision.

4 Conclusions
This study examined land use and land cover
(LULC) maps sourced from the MapBiomas plat-
form spanning 2018 to 2022. Predictive LULC maps
for the period 2022 to 2030 were generated using the
MOLUSCE tool in QGIS. Deforestation was repre-
sented as the transition from the Forest Formation
class to any other LULC category. The findings con-
firm the expected trend of natural cover areas being

replaced by anthropogenic uses, notably Agricul-
ture and Livestock Areas expanding at the eastern
and western boundaries of the CELS. To mitigate
this, promoting sustainable anthropogenic practi-
ces such as agroecology is recommended.

Furthermore, it was observed that conservation
areas exhibit lower deforestation rates, while most
of the deforestation occurs in areas lacking any
form of conservation status. Therefore, strengthe-
ning existing conservation areas, establishing new
ones, and addressing the significant portion of un-
protected natural cover within CELS are advisable
strategies.

The relatively low deforestation rates found po-
sed challenges in detecting changes in LULC maps.
This challenge was also reflected in the Artificial
Neural Network (ANN) algorithm, where training
intervals had to be extended to two years due to
minimal changes observed annually.

Using the ANN model and Cellular Automata
simulation algorithm, the study estimated annual
change rates between 2018 and 2022 as follows: a
decrease of 0.37% per year, equivalent to 1147.33
hectares, for Forest Formation; a reduction of 1.17%
per year, or 30.01 hectares, for Non-Forest Natural
Formation; an increase of 2.21% per year, corres-
ponding to 906.19 hectares, for Agriculture and Li-
vestock Areas; a rise of 8.50% per year, represen-
ting 250.84 hectares, for Non-Vegetated Areas; and
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a slight increase of 0.17% per year, or 30.31 hec-
tares, for Water Bodies. In contrast, LULC simula-
tions for 2022 to 2030 predict an annual decrease of
0.27%, equal to 1628.97 hectares, for Forest Forma-
tion; a reduction of 1.39% per year, or 63.49 hecta-
res, for Non-Forest Natural Formation; an increase
of 1.92% per year, amounting to 1778.26 hectares,
for Agriculture and Livestock Areas; a rise of 0.97%
per year, adding 30.38 hectares, for Non-Vegetated
Areas; and a slight decline of 0.63% per year, to-
taling 146.18 hectares, for Water Bodies. The mo-
del’s predictive accuracy, evaluated using the Kap-
pa coefficient, indicated excellent performance.
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