Autonomous solar thermal system design for indirect dehydration of Aguaymanto (Physalis Peruviana L.), Junín

Main Article Content

Bécquer Camayo
Miguel Quispe
David Condezo
Juan Raúl Massipe
José Galarza
Enrique Mucha


This paper aimed to design an autonomous indirect solar dryer, which can dehydrate the aguaymanto in a costeffective manner, yielding a quality product suitable for export from the central part highland of Peru. To complete this task, it was proposed to design a prototype of autonomous solar dryer of 100 kg per batch of aguaymanto, equipped with flat reflectors and forced air feed, and powered with photovoltaic energy. This system allows to dry aguaymanto fruit at the requirements needed for its exportation. The fryer has the following dimensions: inner dimensions of the drying chamber: bottom 0.60 m, width 1.40 m, and height 1.10 m, with additional 0.05 m for insulation. Hence, the outer measures are bottom 0.70 m, width 1.50 m, and height 1.20 m. Two solar collectors are proposed with the dimensions of each: 1.50 m wide, 2.40 m long, and 0.15 m height; 2 flat mirror reflectors are required. A 80 Wp photovoltaic panel was selected for the forced air system and process control. This solar dryer is expected to cope with the problem of post-harvest deterioration. Also, it will facilitate the export by improving product quality and providing a cost-effective technology.
Abstract 664 | PDF (Español (España)) Downloads 199 PDF Downloads 183 HTML (Español (España)) Downloads 58 EPUB (Español (España)) Downloads 9


Jakab, A. (2020). The ammonium lactate soluble potassium and phosphorus content of the soils of north-east Hungary region: a quantifying study. DRC Sustainable Future, 1(1):7-13. DOI: 10.37281/DRCSF/1.1.2
Sándor, Zs., Tállai, M., Kincses, I., László, Z., Kátai, J., and Vágó, I. (2020). Effect of various soil cultivation methods on some microbial soil properties. DRC Sustainable Future, 1(1):14-20. DOI: 10.37281/DRCSF/1.1.3
Solangi, K. H., Islam, M. R., Saidur, R., Rahim, N. A., and Fayaz, H. (2011). A review on global solar energy policy. Renewable and Sustainable Energy Reviews, 15(4): 2149–2163. doi:10.1016/j.rser.2011.01.007
Reid, W.V., Chen, D., Goldfarb, L., Hackmann, H., Lee, Y.T., Mokhele, K. et al. (2010). Earth system science for global sustainability: grand challenges. Science, 330:916-917.
Marcucci, A., and Turton. H. (2015). Induced technological change in moderate and fragmented climate change mitigation regimes. Technol Forecast Soc Change, 90:230-242.
Lachuriya, A., and Kulkarni, R.D. (2017). Stationary electrical energy storage technology for global energy sustainability: A review,” 2017 International Conference on Nascent Technologies in Engineering (ICNTE), Navi Mumbai, India, Jan. 27-28, 2017, pp.1-6.
Lowy, D.A., and Mátyás, B. (2020). Sea Water Activated Magnesium-Air Reserve Batteries: Calculation of Specific Energy and Energy Density for Various Geometries. DRC Sustainable Future, 1(1):1-6. DOI: 10.37281/DRCSF/1.1.1
USDE. Solar energy grew at a record pace in 2008, detail.cfm/news id=12362; 2010 [accessed June 2010].
Wikipedia. Solar power in the United States, wiki/Solar power in the United States#Installed capacity; 2010 [accessed July 2010].
USDE. Study: Solar Power Could Provide 10% of U.S. Electricity by 2025, detail.cfm/news id=11835; 2010 [accessed may 2010].
Liming, H., Haque, E., and Barg, S. (2008) Public policy discourse, planning and mea- sures toward sustainable energy strategies in Canada. Renewable Sustainable Energy Rev, 12(1):91–115.
Smitherman, G.B. (2009) An Act to en act the Green Energy Act, 2009 and to build a green economy, to repeal the Energy Conservation Leadership Act, 2006 and the Energy Efficiency Act and to amend other statutes 2009 (Legislative AssemblyofOntario).
OPA. Ontario Power Authority feed-in-tariff (OPA), index.phpS; 2009 [accessed 20.08.09].
OPA. Ontario Power Authority: Feed-in-Tariff Program Development,; 2009 [accessed 20.08.09].
Branker, K, and Pearce, JM. (2010). Financial return for government support of large-scale thin-film solar photovoltaic manufacturing in Canada. Energy Policy, 38(8):4291–303.
BMU.Electricityfromrenewableenergysources–whatdoesitcostUs?Berlin,Germany; 2008.
Bhandari, R, Stadler, I. (2009). Grid parity analysis of solar photovoltaic systems in Germany using experience curves. Solar Energy, 83(9):1634–44.
Luigi, D, and Enrico, T. (2010). Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in western European Union countries. Energy Policy, 38(7):3297–308.
Campoccia, A., Dusonchet, L., Telaretti, E., and Zizzo, G. (2009). Comparative analysis of different supporting measures for the production of electrical energy by solar PV and Wind systems: four representative European cases. Solar Energy, 83(3):287–97.
Dusonchet, L., and Telaretti, E. (2010). Economicanalysisofdifferentsupportingpoliciesfor the production of electrical energy by solar photovoltaics in western Euro- pean Union countries. Energy Policy, 38(7): 3297–308.
Wang, Q., and Qiu, H.N. (2009). Situation and outlook of solar energy utilization in Tibet,China. Renewable Sustainable Energy Rev, 13(8):2181–6.
Caldés, N., Varela, M., Santamaría, M, Sáez, R. (2009). Economic impact of solar thermal electricity deployment in Spain. Energy Policy, 37(5):1628–36.
Wang, Q. (2010). Effective policies for renewable energy – the example of China’s wind power – lessons for China’s photovoltaic power. Renewable Sustainable Energy Rev, 14(2):702–12.
Ashraf, CM, Raza, R., Hayat, S.A. (2009). Renewable energy technologies in Pakistan: prospects and challenges. Renewable Sustainable Energy Rev, 13(6–7):1657–1662.
Espinoza, R. (1991). Teoría y práctica del secado solar - Google Libros (UNI, Ed.). Retrieved fromía_y_práctica_del_secado_solar.html?id=7vKGrgEACAAJ&redir_esc=y
Sommerfeld, J., and Buys, L. (2014). Australian Consumer Attitudes and Decision Making on Renewable Energy Technology and Its Impact on the Transformation of the Energy Sector. Open Journal of Energy Efficiency, 3(3): 85–91.
Gamio, P. (2014). Renewable Energies and Climate Change, 7 demonstrating projects sustainable development. In Konrad Adenauer Stiftung e.V.
Mekhilef, S., Saidur, R. & Safari, A. (2011). A review on solar energy use in industries. Renewable and Sustainable Energy Reviews, 15(4):1777–1790.
Timilsina, G. R., Kurdgelashvili, L. and Narbel, P. A. (2011). Solar energy: Markets, economics and policies. Renewable and Sustainable Energy Reviews, 16, 449–465.
Roche-Delgado, L., Hernández-Touset, J. P. and García-Rodríguez, A. (2017). CONCEPTUAL DESIGN OF A PILOT SCALE SOLAR DRYER FOR MARINE ALGAE. Chemical Technology,37(2):184-200.Retrieved from
Benavides, L. (Exporting Sierra) (2014). PROJECT: INDUSTRIAL INNOVATION DEHYDRATATION OF BERRIES - AGUAYMANTO 2014-2015 | PDF Flipbook. Retrieved March 6, 2018, from Sierra Exportadora website:
AOAC (2000). Official Methods of Analysis. Retrieved from
Camayo-Lapa, B. F., Pomachagua-Paucar, J. E., Massipe-Hernaández, J. R., Quispe-Flores, M. O. and Torres-Ten, A. (2017). Validation and application of the Bristow Campbell model to estimate the global solar radiation of the Junin region. Chemical Technology, 37(3): 574-590. Retrieved from