Allophane, a Natural Nanoparticle Present in Andisoles of Ecuador, Properties and Applications

Main Article Content

Jorge Silva-Yumi
Roberto Cazorla Martínez
Carlos Medina Serrano
Gabriela Chango Lescano


The allophane is a natural nanoparticle present in soils from volcanic origin such as andisols, which are distributed worldwide, especially in countries that have active volcanoes. In Ecuador, andisols are in high and humid areas from the Highland/North region, constituting 30% of the territory. The allophane can be obtained from andisols through physical and chemical processes or it can be also synthesized. This nanomaterial has multiple properties for various applications in different areas; and there are studies about these nanoparticles and this kind of soil, but they have not yet been conducted in Ecuador. This article presents a review of structural characteristics, properties, formation, isolation, synthesis and uses of allophane to extend knowledge and encourage the conduction of research in these soils, which are the source of the aforementioned nanoparticle. The literature review was performed on Science Directand Google Scholar databases using high impact articles related to natural or synthetic allophane. Allophane has characteristics that allow it to be used as an environmental remediator, bactericidal, anti-inflammatory, flame retardant, enzyme support and also in catalysis, photocatalysis and electrocatalysis. Considering the availability and the large area covered by andisols in Ecuador, research based on international investigations can be perform to take advantage of it.
Abstract 550 | PDF (Español (España)) Downloads 200 PDF Downloads 129 HTML (Español (España)) Downloads 31 EPUB (Español (España)) Downloads 9


Abidin, Z., Kumon, A., Matsue, N., & Henmi, T. (2011). Fenton-like reaction on degradation of organic dye by natural allophane. Abstracts of Annual Meeting of The Clay Science Society of Japan, 124–125. Available from:
Alvarado, A., Mata, R., & Chinchilla, M. (2014). Arcillas identificadas en suelos de Costa Rica a nivel generalizado durante el periodo 931-2014:I. Historia, metodología de análisis y mineralogía de arcillas en suelos derivados de cenizas volcánicas. Agronomía Costarricense, 38(1), 75–106.
Arakawa, S., Matsuura, Y., & Okamoto, M. (2014). Allophane-Pt nanocomposite: Synthesis and MO simulation. Applied Clay Science, 95, 191–196. Available from:
Araujo-Bilmonte, E., Huertas-Tulcanaza, L., & Párraga-Stead, K. (2020). Análisis de la producción científica del Ecuador a través de la plataforma Web of Science. Cátedra, 3(2), 150–165. Available from:
Baldermann, A., Grießbacher, A., Baldermann, C., Purgstaller, B., Letofsky-Papst, I., Kaufhold, S., & Dietzel, M. (2018). Removal of Barium, Cobalt, Strontium, and Zinc from Solution by Natural and Synthetic Allophane Adsorbents. Geosciences, 8(9), 309. Available from:
Buytaert, W., Deckers, J., & Wyseure, G. (2007). Regional variability of volcanic ash soils in south Ecuador: The relation with parent material, climate and land use. Catena, 70, 143–154. Available from:
Calabi-Floody, M., Velásquez, G., Gianfreda, L., Saggar, S., Bolan, N., Rumpel, C., & Luz, M. (2012). Improving bioavailability of phosphorous from cattle dung by using phosphatase immobilized on natural clay and nanoclay. Chemosphere, 89(6), 648–655. Available from:
Calvache, M. (2014). El suelo y la productividad agrícola en la sierra del Ecuador. XIV Congreso Ecuatoriano de La Ciencia Del Suelo.
Calvache, M. (2015). Manejo sostenible de los suelos del Ecuador. VII Congreso Sudamericano de Agronomía, Guayaquil.
Cervini-Silva, J., Gomez-Vidales, V., Ramirez-Apan, M. T., Palacios, E., Montoya, A., Kaufhold, S., Abidin, Z., & Theng, B. K. G. (2014). Lipid peroxidation and cytotoxicity induced by respirable volcanic ash. Journal of Hazardous Materials, 274, 237–246. Available from:
Cervini-Silva, J., Nieto, A., Gómez, V., Kaufhold, S., & Theng, B. (2015). The anti-inflammatory activity of natural allophane. Applied Clay Science, 105–106, 48–51. Available from:
Cervini-Silva, J., Nieto, A., Palacios, E., Pentrak, M., Pentrakova, L., Kaufhold, S., Ufer, K., Ramírez-Apan, M. T., Gómez-Vidales, V., Rodríguez, D., Montoya, A., Stucki, J. W., & Theng, B. K. G. (2016). Anti-inflammatory, antibacterial, and cytotoxic activity by natural matrices of nano-iron (hydr)oxide/halloysite. Applied Clay Science, 120, 101–110. Available from:
Chevallier, T., Woignier, T., Toucet, J., & Blanchart, E. (2010). Organic carbon stabilization in the fractal pore structure of Andosols. Geoderma, 159(1–2), 182–188. Available from:
Elhadi, E., Matsue, N., & Henmi, T. (2000). Adsorption of molybdate on nano-ball allophane. Clay Science, 11(2), 189–203. Available from:
FAO. (2014). Atlas de Suelos de América Latina y el Caribe (FAO (ed.)). Oficina de Publicaciones de la Union Europea. Available from:
FAO. (2015). Base referencial mundial del recurso suelo 2014 Sistema internacional de clasificación de suelos para la nomenclatura de suelos y la creación de leyendas de mapas de suelos.
Garrido-Ramírez, E., Marco, J., Escalona, N., & Ureta-Zañartu, M. (2016). Preparation and characterization of bimetallic Fe-Cu allophane nanoclays and their activity in the phenol oxidation by heterogeneous electro-Fenton reaction. Microporous and Mesoporous Materials, 225, 303–311. Available from:
Garrido-Ramírez, E., Mora, M., Marco, J., & Ureta-Zañartu, M. (2013). Characterization of nanostructured allophane clays and their use as support of iron species in a heterogeneous electro-Fenton system. Applied Clay Science, 86, 153–161. Available from:
Garrido-Ramirez, E., Sivaiah, M., Barrault, J., Valange, S., Theng, B., Ureta-Zañartu, M., & Mora, M. (2012). Catalytic wet peroxide oxidation of phenol over iron or copper oxide-supported allophane clay materials: Influence of catalyst SiO2/Al2O3 ratio. Microporous and Mesoporous Materials, 162, 189–198. Available from:
Garrido, E., & Matus, F. (2012). Are organo-mineral complexes and allophane content determinant factors for the carbon level in Chilean volcanic soils? Catena, 92, 106–112. Available from:
Gonzales, A. (2015). Los suelos del Ecuador. XX Congreso Latinoamericano y XVI Congreso Peruano de La Ciencia Del Suelo; Cusco, Noviembre 9-15.
Gonzalez, A. (2010). Suelos de Ecuador. 1er Taller Latinoamericano Globalsoilmap.Net, Rio de Janeiro, Septiembre 06-08.
Griffin, S., Masood, M. I., Nasim, M. J., Sarfraz, M., Ebokaiwe, A. P., Schäfer, K. H., Keck, C. M., & Jacob, C. (2018). Natural nanoparticles: A particular matter inspired by nature. Antioxidants, 7(1). Available from:
Gutiérrez Coronado, J. (2018). El Mundo “Nano” De Ecuador, ¿Cómo De Grande Es? Momento, 0(56E), 65–80.
Hashizume, H., & Theng, B. (2007). Adenine, adenosine, ribose and 5´-AMP adsorption to allophane. Clays and Clay Minerals, 55(6), 599–605. Available from:
Hashizume, H., Theng, B. K. G., & Yamagishi, A. (2002). Adsorption and discrimination of alanine and alanyl-alanine enantiomers by allophane. ClayMinerals, 37, 551–557. Available from:
Heiligtag, F. J., & Niederberger, M. (2013). The fascinating world of nanoparticle research. Materials Today, 16(7–8), 262–271. Available from:
Henmi, T., & Wada, K. (1976). Morphology and composition of allophane. American Mineralogist, 61(5–6), 379–390.
Hojamberdiev, M., Katsumata, K., Matsushita, N., & Okada, K. (2014). Preparation of Bi2WO6 – and BiOI – allophane composites for efficient photodegradation of gaseous acetaldehyde under visible light. Applied Clay Science, 101, 38–43. Available from:
Hojamberdiev, M., Makinose, Y., Katsumata, K., Isobe, T., Matsushita, N., & Okada, K. (2014). Hydrothermal synthesis and visible-light-driven photocatalytic activity of Allophane–wakefieldite- (Ce) composite. Advanced Materials Research, 896, 545–548. Available from:
Huang, Y., Lowe, D. J., Churchman, G. J., Schipper, L. A., Rawlence, N. J., & Cooper, A. (2014). Carbon storage and DNA adsorption in allophanic soils and paleosols. In A. E. Hartemink & K. McSweeney (Eds.), Soil Carbon. Progress in Soil Science Series (pp. 163–172). Springer. Available from:
Iyoda, F., Hayashi, S., Arakawa, S., John, B., Okamoto, M., Hayashi, H., & Yuan, G. (2012). Synthesis and adsorption characteristics of hollow spherical allophane nano-particles. Applied Clay Science, 56, 77–83. Available from:
Jansen, B., & Nierop, K. G. J. (2009). Methyl ketones in high altitude Ecuadorian Andosols confirm excellent conservation of plant-specific n-alkane patterns. Organic Geochemistry, 40(1), 61–69. Available from:
Kaufhold, S., Dohrmann, R., Abidin, Z., Henmi, T., Matsue, N., Eichinger, L., Kaufhold, A., & Jahn, R. (2010). Allophane compared with other sorbent minerals for the removal of fluoride from water with particular focus on a mineable Ecuadorian allophane. Applied Clay Science, 50, 25–33. Available from:
Kaufhold, S., Ufer, K., Kaufhold, A., Stucki, J. W., Jahn, R., & Dohrmann, R. (2010). Quantification of allophane from ecuador. Clays and Clay Minerals, 58(5), 707–716. Available from:
Kawachi, T., Matsuura, Y., Iyoda, F., Arakawa, S., & Okamoto, M. (2013). Preparation and characterization of DNA/allophane composite hydrogels. Colloids and Surfaces B: Biointerfaces, 112, 429–434. Available from:
Matsuura, Y., Arakawa, S., & Okamoto, M. (2014). Single-stranded DNA adsorption characteristics by hollow spherule allophane nano-particles: pH dependence and computer simulation. Applied Clay Science, 101, 591–597. Available from:
Matsuura, Y., Iyoda, F., Arakawa, S., John, B., Okamoto, M., & Hayashi, H. (2013). DNA adsorption characteristics of hollow spherule allophane nano-particles. Materials Science & Engineering C, 33(8), 5079–5083. Available from:
Menezes-Blackburn, D., Jorquera, M., Gianfreda, L., Rao, M., Greiner, R., Garrido, E., De, M., & Mora, L. (2011). Activity stabilization of Aspergillus niger and Escherichia coli phytases immobilized on allophanic synthetic compounds and montmorillonite nanoclays. Bioresource Technology, 102, 9360–9367. Available from:
Nguyen, T. A., & Rajendran, S. (2020). Current commercial nanocosmetic products. In Nanocosmetics. INC. Available from:
Nishikiori, H., Furukawa, M., & Fujii, T. (2011). Degradation of trichloroethylene using highly adsorptive allophane–TiO2 nanocomposite. Applied Catalysis B: Environmental, 102(3–4), 470–474. Available from:
Nishikiori, H., Hashiguchi, S., Ito, M., & Setiawan, R. (2014). Reaction in photofuel cells using allophane – titania nanocomposite electrodes. Applied Catalysis B, Environmental, 147, 246–250. Available from:
Nishikiori, H., Ito, M., Setiawan, A., Kikuchi, A., Yamakami, T., & Fujii, T. (2012). Photofuel Cells Using Allophane-Titania Nanocomposites. Chemistry Letters, 41, 725–727. Available from:
Nishikiori, H., Kabayashi, K., Kubota, S., Tanaka, N., & Fujii, T. (2010). Removal of detergents and fats from waste water using allophane. Applied Clay Science, 47(3–4), 325–329. Available from:
Nishikiori, H., Morita, K., Shibuya, Y., & Yagashira, K. (2015). Degradation of Trichloroethylene Using Allophane ­ Titania Nanocomposite Supported on Porous Filter. Chemistry Letters, 44(5), 639–641. Available from:
Nishikiori, Hiromasa, Matsunaga, S., Furuichi, N., Takayama, H., Moritab, K., Teshimaa, K., & Yamashita, H. (2017). Influence of allophane distribution on photocatalytic activity of allophane– titania composite films. Applied Clay Science, 146, 43–49. Available from:
Ogaki, Y., Shimozuka, Y., Hara, T., Ichikuni, N., & Shimazu, S. (2011). Hemicellulose decomposition and saccharides production from various plant biomass by sulfonated allophane catalyst. Catalysis Today, 164(1), 415–418. Available from:
Ono, Y., & Katsumata, K. (2014). Enhanced photocatalytic activity of titanium dioxide/allophane mixed powder by acid treatment. Applied Clay Science, 90, 61–66. Available from:
Opiso, E., Sato, T., & Yoneda, T. (2009). Adsorption and co-precipitation behavior of arsenate, chromate, selenate and boric acid with synthetic allophane-like materials. Journal of Hazardous Materials, 170(1), 79–86. Available from:
Pérez, N., Bucio, L., Lima, E., Soto, E., & Cedillo, C. (2016). Identification of allophane and other semi-crystalline and amorphous phases on pre-Hispanic Mexican adobe earth bricks from Cholula, Mexico. Microchemical Journal, 126, 349–358. Available from:
Podwojewski, P., & Germain, N. (2005). Short-term effects of management on the soil structure in a deep tilled hardened volcanic-ash soil (cangahua) in Ecuador. European Journal of Soil Science, 56, 39–51. Available from:
Podwojewski, P., Poulenard, J., Zambrana, T., & Hofstede, R. (2002). Overgrazing effects on vegetation cover and properties of volcanic ash soil in the páramo of Llangahua and La Esperanza (Tungurahua, Ecuador). Soil Use and Management, 18, 45–55. Available from:
Poncelet, O., & Jouhannaud, J. (2013). Use of nanoparticles for the long-term "dry " storage of peroxide radicals (Patent No. US 20130142996 A1).
Rashidi, A., Mohammadzadeh, F., Editor, S., & Bergmann, C. P. (2018). Nanotechnology in Oil and Gas Industries. Nanotechnology in Oil and Gas Industries, December 2017, 193–210. Available from:
Reinert, L., Ohashi, F., Kehal, M., Bantignies, J., Goze-bac, C., & Duclaux, L. (2011). Characterization and boron adsorption of hydrothermally synthesised allophanes. Applied Clay Science, 54(3–4), 274–280. Available from:
Rosas, A., Mora, M. D. L., Jara, A., López, R., Rao, M., & Gianfreda, L. (2008). Catalytic behaviour of acid phosphatase immobilized on natural supports in the presence of manganese or molybdenum. Geoderma, 145(1–2), 77–83. Available from:
Saeki, K., Sakai, M., & Wada, S.-I. (2010). DNA adsorption on synthetic and natural allophanes. Applied Clay Science, 50(4), 493–497. Available from:
Shukla, E., Johan, E., Abidin, Z., Henmi, T., & Matsue, N. (2013). A comparative study of arsenate and phosphate adsorption on nano-ball allophane. Clay Science, 17(4), 83–91.
Silva-Yumi, J., Escudey, M., Gacitua, M., & Pizarro, C. (2018). Kinetics, adsorption and desorption of Cd(II) and Cu(II) on natural allophane: Effect of iron oxide coating. Geoderma, 319(1), 70–79. Available from:
Toyota, Y., Matsuura, Y., Ito, M., Domura, R., Okamoto, M., Arakawa, S., Hirano, M., & Kohda, K. (2017). Cytotoxicity of natural allophane nanoparticles on human lung cancer A549 cells. Applied Clay Science, 135, 485–492. Available from:
Triomphe, B., & Livermore, L. (2005). Mineralogical control of organic carbon dynamics in a volcanic ash soil on La Réunion. European Journal of Soil Science, 56, 689–703. Available from:
Vaca, J., & Lalangui, S. (2018). Evaluación de métodos de activación del alofán de Santo Domingo de los Tsáchilas. Universidad Central del Ecuador.
Vistoso, E., Theng, B. K. G., Bolan, N. S., Parfit, R. L., & Mora, M. L. (2012). Competitive sorption of molybdate and phosphate in Andisols. Journal of Soil Science and Plant Nutrition, 12(1), 59–72. Available from:
Wilson, N. (2018). Nanoparticles: Environmental Problems or Problem Solvers? BioScience, 68(4), 241–246. Available from:
Yu-Huang, H., David, L., Churchman, G. J., Schipper, L. A., Cursons, R., Zhang, H., Tsan-yao, C., & Cooper, A. (2016). DNA adsorption by nanocrystalline allophane spherules and nanoaggregates, and implications for carbon sequestration in Andisols. Applied Clay Science, 120, 40–50. Available from:
Yu, G., Wu, M.-J., Wei, G.-R., Luo, Y.-H., Ran, W., Wang, B.-R., ZHang, J., & Shen, Q.-R. (2012). Binding of Organic Ligands with Al(III) in Dissolved Organic Matter from Soil: Implications for Soil Organic Carbon Storage. Environmental Science & Technology, 46(11), 6102−6109. Available from:
Yuan, G., & Wada, S. (2012). Allophane and Imogolite nanoparticles in soil and their environmental applications. In A. S. Barnard & H. Guo (Eds.), Nature’s Nanostructures (pp. 493–553). Pan Stanford Publishing Pte. Ltd.
Zaenal, A., Matsue, N., & Henmi, T. (2013). Adsorption of amines on nano-ball allophane and its molecular orbital analysis. The Clay Science Society of Japan, 17(3), 67–73.
Zchetner, F., Miller, W., & West, L. (2003). Pedogenesis of volcanic ash soils in Andean Ecuador. Soil Science Society of America Journal, 67(6), 1797–1809.