CO2 mitigation strategies based on soil respiration

Main Article Content

Leticia Citlaly López-Teloxa http://orcid.org/0000-0002-0258-325X
Alejandro Ismael Monterroso-Rivas http://orcid.org/0000-0003-4348-8918

Abstract

Soil, in addition to storing is a source of CO2 to the atmosphere emitted by soil respiration, mainly due to land use change. The objective of the research was to evaluate soil respiration in different uses and quantify its CO2 emissions at two different times of the year, as well as estimate the storage of this to make a balance to establish strategies that allows with the climate change mitigation. Using a closed dynamic chamber placed on the soil and integrated with an infrared gas analyzer measured the CO2 emission every 30 min, as well as temperature and moisture of the soil with sensors. Three land uses (agroforestry, forestry and agricultural) and two seasons of the year (summer and winter) were analyzed for 24 continuous hours at each site. Positive correlation between ambient temperature and soil respiration was found to exist. The agricultural system stores low carbon content in the soil (50.31 t C ha-1) and emits 9.28 t of C ha-1 in the highest temperature season, in contrast to a natural system that emits 3.98 t of C ha-1 and stores 198.90 t of C ha-1. The balance sheet reflects the need to know CO2 emissions to the atmosphere from soils and not just warehouses. Having scientific support from the ground to the atmosphere is an important step in decision-making that will contribute to climate change mitigation.
Abstract 283 | PDF (Español (España)) Downloads 72 PDF Downloads 107 HTML (Español (España)) Downloads 17 EPUB (Español (España)) Downloads 2 XML (Español (España)) Downloads 0

References

Abdalla, K., Mutema, M., Chivenge, P., Everson, C. y Chaplot, V., 2018. Grassland degradation significantly enhances soil CO2 emission. Catena, [en línea] 167(April), pp.284–292. Disponible en: https://doi.org/10.1016/j.catena.2018.05.010

Alberti, G., Vedove, G.D., Zuliani, M., Peressotti, A., Castaldi, S. y Zerbi, G., 2010. Changes in CO. emissions after crop conversion from continuous maize to alfalfa. Agriculture, Ecosystems and Environment, 136(1–2), pp.139–147.

de Araújo Santos, G.A., Moitinho, M.R., de Oliveira Silva, B., Xavier, C.V., Teixeira, D.D.B., Corá, J.E. y Júnior, N.L.S., 2019. Effects of long-term no-tillage systems with different succession cropping strategies on the variation of soil CO. emission. Science of the Total Environment, 686, pp.413–424.

ArchMiller, A.A. y Samuelson, L.J., 2016. Intra-annual variation of soil respiration across four heterogeneous longleaf pine forests in the southeastern United States. Forest Ecology and Management, [en línea] 359, pp.370–380. Disponible en: ; [Consultado 12 nov. 2019].

Baah-Acheamfour, M., Carlyle, C.N., Lim, S.S., Bork, E.W. y Chang, S.X., 2016. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils. Science of the Total Environment, [en línea] 571, pp.1115–1127. Disponible en: https://doi.org/10.1016/j.scitotenv.2016.07.106

Burbano, H., 2018. El carbono orgánico del suelo y su papel frente al cambio climático. Revista Ciencias Agropecuarias, [en línea] 34(1), pp.82–96. Disponible en:doi: http://dx.doi.org/10.22267/rcia.183501.85

Campos, A., 2014. Trends in soil respiration on the eastern slope of the Cofre de Perote Volcano (Mexico): Environmental contributions. Catena, 114, pp.59–66.

Chávez-Salcedo, L.F., Queijeiro-Bolaños, M.E., López-Gómez, V., Cano-Santana, Z., Mejía-Recamier, B.E. y Mojica-Guzmán, A., 2018. Contrasting arthropod communities associated with dwarf mistletoes Arceuthobium globosum and A. vaginatum and their host Pinus hartwegii. Journal of Forestry Research, 29(5), pp.1351–1364.

Chi, Y., Yang, P., Ren, S., Ma, N., Yang, J. y Xu, Y., 2020. Effects of fertilizer types and water quality on carbon dioxide emissions from soil in wheat-maize rotations. Science of The Total Environment, [en línea] 698(134010), pp.1–9. Disponible en:https://doi.org/10.1016/j.scitotenv.2019.134010

Costa, E.N.D. da, Landim de Souza, M.F. de, Lima Marrocos, P.C., Lobão, D. y Lopes da Silva, D.M., 2018. Soil organic matter and CO. fluxes in small tropical watersheds under forest and cacao agroforestry. PLoS ONE, 13(7).

Curtin, D., Wang, H., Selles, F., McConkey, B.G. y Campbell, C.A., 2000. Tillage Effects on Carbon Fluxes in Continuous Wheat and Fallow–Wheat Rotations. Soil Science Society of America Journal, 64(6), pp.2080–2086.

Etchevers Barra, J., Monreal, C.M., Hidalgo M., C., Acosta M., M., Padilla C., J. y López R., R., 2005. Manual para la determinación de carbono en la parte aérea y subterranea de sistemas de producción en laderas.

Francioni, M., D’ottavio, P., Lai, R., Trozzo, L., Budimir, K., Foresi, L., Kishimoto-Mo, A.W., Baldoni, N., Allegrezza, M., Tesei, G. y Toderi, M., 2019. Seasonal soil respiration dynamics and carbon-stock variations in mountain permanent grasslands compared to arable lands. Agriculture (Switzerland), 9(8).

Han, M., Shi, B. y Jin, G., 2018. Conversion of primary mixed forest into secondary broadleaved forest and coniferous plantations: Effects on temporal dynamics of soil CO. efflux. Catena, 162(2012), pp.157–165.

Hu, S., Li, Y., Chang, S.X., Li, Y., Yang, W., Fu, W., Liu, J., Jiang, P. y Lin, Z., 2018. Soil autotrophic and heterotrophic respiration respond differently to land-use change and variations in environmental factors. Agricultural and Forest Meteorology, 250–251(January), pp.290–298.

IPCC, 2013. Climate Change 2013: The Physical Science Basis. [en línea] Fifth Assessment Report. Disponible en: .

Kane, E.S., Valentine, D.W., Schuur, E.A.G. y Dutta, K., 2005. Soil carbon stabilization along climate and stand productivity gradients in black spruce forests of interior Alaska. Canadian Journal of Forest Research, 35(9), pp.2118–2129.

Kwak, J.H., Lim, S.S., Baah-Acheamfour, M., Choi, W.J., Fatemi, F., Carlyle, C.N., Bork, E.W. y Chang, S.X., 2019. Introducing trees to agricultural lands increases greenhouse gas emission during spring thaw in Canadian agroforestry systems. Science of the Total Environment, [en línea] 652, pp.800–809. Disponible en: https://doi.org/10.1016/j.scitotenv.2018.10.241

Liebermann, R., Breuer, L., Houska, T., Kraus, D., Moser, G. y Kraft, P., 2020. Simulating long-term development of greenhouse gas emissions, plant biomass, and soil moisture of a temperate grassland ecosystem under elevated atmospheric CO.. Agronomy, 10(1), pp.1–17.

Lomas-Barrié, C.T., Terrazas-Domínguez, S. y Tchikoué Maga, H., 2005. Propuesta de ordenamiento ecológico territorial para el parque nacional Zoquiapan y anexas. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 11(1), pp.57–71.

López-Teloxa, L., Monterroso-Rivas, A.I. y Gómez-Díaz, J.D., 2020. Diseño de calibración para cuantificar emisiones de CO. (respiración) en suelos durante intervalos horarios diurnos. Agrociencia., p.En prensa.

López-Teloxa, L.C., Cruz-Montalvo, A., Tamaríz-Flores, J. V., Pérez-Avilés, R., Torres, E. y Castelán-Vega, R., 2017. Short-temporal variation of soil organic carbon in different land use systems in the ramsar site 2027 “presa manuel Ávila Camacho” Puebla. Journal of Earth System Science, 126(7).

Moitinho, M.R., Padovan, M.P., Panosso, A.R., Teixeira, D.D.B., Ferraudo, A.S. y La Scala, N., 2015. On the spatial and temporal dependence of CO. emission on soil properties in sugarcane (Saccharum spp.) production. Soil and Tillage Research, [en línea] 148, pp.127–132. Disponible en: https://doi.org/10.1016/j.still.2014.12.012

Mukumbuta, I., Shimizu, M. y Hatano, R., 2019. Short-term land-use change from grassland to cornfield increases soil organic carbon and reduces total soil respiration. Soil and Tillage Research, [en línea] 186, pp.1–10. Disponible en: https://doi.org/10.1016/j.still.2018.09.010

Murcia, M. y Ochoa, M., 2008. Respiración del suelo en una comunidad sucesional de pastizal del bosque Altoandino en la cuenca del Río Pamplonita, Colombia. Caldasia, 30(2), pp.337–353.

Murcia, M. y Ochoa, M., 2012. Respiración del suelo y caída de hojarasca en el matorral del bosque altoandino (Cuenca del Río Pamplonita, Colombia). Caldasia, 34(1), pp.165–185.

Nouchi, I. y Yonemura, S., 2005. CO., CH. and N.O fluxes from soybean and barley double-cropping in relation to tillage in Japan. Phyton - Annales Rei Botanicae, 45(4), pp.327–338.

Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. y Erasmi, S., 2016. Greenhouse gas emissions from soils—A review. Chemie der Erde - Geochemistry, 76(3), pp.327–352.

Panosso, A.R., Marques, J., Pereira, G.T. y La Scala, N., 2009. Spatial and temporalvariability of soil CO2 emission in a sugarcanearea under green and slash-and-burn managements». En: Soil and Tillage Research 105.2,275-282. Dispoible en: https://doi.org/10.1016/j.still.2009.09.008

Patiño-Zúñiga, L., Ceja-Navarro, J.A., Govaerts, B., Luna-Guido, M., Sayre, K.D. y Dendooven, L., 2009. The effect of different tillage and residue management practices on soil characteristics, inorganic N dynamics and emissions of N.O, CO. and CH. in the central highlands of Mexico: A laboratory study. Plant and Soil, 314(1–2), pp.231–241.

Ramírez, A.A. y Moreno, F.H., 2008. Respiración microbial y de raíces en suelos de bosques tropicales primarios y secundarios (Porce, Colombia). Revista Facultad Nacional de agronomia sede Medellin, 61(1), pp.4381–4393.

Sainju, U.M., Jabro, J.D. y Stevens, W.B., 2008. Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization. Journal of Environmental Quality, 37(1), pp.98–106.

Sainju, U.M., Stevens, W.B., Caesar-TonThat, T., Liebig, M.A. y Wang, J., 2014. Net global warming potential and greenhouse gas intensity influenced by irrigation, tillage, crop rotation, and nitrogen fertilization. Journal of Environmental Quality, [en línea] 43(3), pp.777–788. Disponible en: <10.2134/jeq2013.10.0405>.

La Scala, N., Lopes, A., Marques, J. y Pereira, G.T., 2001. Carbon dioxide emissions after application of tillage systems for a dark red latosol in southern Brazil. Soil and Tillage Research, [en línea] 62(3–4), pp.163–166. Disponible en: ; [Consultado 8 nov. 2019].

SEMARNAT-INECC, 2018. Sexta Comunicación Nacional y Segundo Informe Bienal de Actualización ante la Convención Marco de las Naciones Unidas sobre el Cambio climático. SEMARNAT.

Serrano, E.Z., Nuñez, M. y Valleter, E., 2017. Respiración de dióxido de carbono de suelo, en bosque tropical húmedo – Gamboa Panamá Carbon. I+D Tecnológico, 13(2).

Singh, S.K., Thawale, P.R., Sharma, J.K., Gautam, R.K., Kundargi, G.P. y Juwarkar, A.A., 2015. Carbon Sequestration in Terrestrial Ecosystems. En: E. Lichtfouse, J. Schwarzbauer y D. Robert, eds. Hydrogen Production and Remediation of Carbon and Pollutants. Cham.pp.99–131.

Tang, X.L., Zhou, G.Y., Liu, S.G., Zhang, D.Q., Liu, S.Z., Li, J. y Zhou, C.Y., 2006. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China. Journal of Integrative Plant Biology, 48(6), pp.654–663.

Tschora, H. y Cherubini, F., 2020. Co-benefits and trade-offs of agroforestry for climate change mitigation and other sustainability goals in West Africa. Global Ecology and Conservation, 22.

UNFCCC, 2015. Decision 1/CP.21. The Paris Agreement.

Wang, C., Han, Y., Chen, J., Wang, X., Zhang, Q. y Bond-Lamberty, B., 2013. Seasonality of soil CO. efflux in a temperate forest: Biophysical effects of snowpack and spring freeze-thaw cycles. Agricultural and Forest Meteorology, 177, pp.83–92.

Zhao, Z.M., Zhao, C.Y., Yan, Y.Y., Li, J.Y., Li, J. y Shi, F.Z., 2013. Interpreting the dependence of soil respiration on soil temperature and moisture in an oasis cotton field, central Asia. Agriculture, Ecosystems and Environment, [en línea] 168, pp.46–52. Disponible en:

Zsolt, S., Tállai, M., Kincses, I., László, Z., Kátai, J. y Vágó, I., 2020. Effect of various soil cultivation methods on some microbial soil properties. DRC Sustainable Future: Journal of Environment, Agriculture, and Energy, 1(1), pp.14–20.