
Identificación de un péptido antimicrobiano de Chamaemelum nobile
Boparai, J. and Sharma, P. (2020). Mini review on
antimicrobial peptides, sources, mechanism and
recent applications. Protein and peptide letters,
27(1):4–16. Online:https://n9.cl/7ca86.
Boyd, L., Ridout, C., O’Sullivan, D., Leach, J., and
Leung, H. (2013). Plant-pathogen interactions:
disease resistance in modern agriculture. Trends
in genetics, 29(4):233–240. Online:https://n9.cl/
mzus9.
Bradford, M. (1976). A rapid and sensitive method
for the quantitation of microgram quantities of
protein utilizing the principle of protein-dye bin-
ding. Analytical biochemistry, 72(1-2):248–254. On-
line:https://n9.cl/dtt6o.
Butt, U., Naz, R., Nosheen, A., Yasmin, H., Keyani,
R., Hussain, I., and Hassan, M. (2019). Changes
in pathogenesis-related gene expression in res-
ponse to bioformulations in the apoplast of mai-
ze leaves against fusarium oxysporum. Journal of
Plant Interactions, 14(1):61–72. Online:https://n9.
cl/47u486.
Carta, G., Murru, E., Banni, S., and Manca, C. (2017).
Palmitic acid: physiological role, metabolism and
nutritional implications. Frontiers in physiology,
8:902. Online:https://n9.cl/u84aoj.
Ceroni, A., Passerini, A., Vullo, A., and Frasconi, P.
(2006). Disulfind: a disulfide bonding state and
cysteine connectivity prediction server. Nucleic
acids research, 34(Web Server issue. Online:https:
//n9.cl/n0oc5):W177–W181.
Edwards, K., Johnstone, C., and Thompson, C.
(1991). A simple and rapid method for the pre-
paration of plant genomic dna for pcr analysis.
Nucleic acids research, 19(6):1349. Online:https://
bit.ly/3UFvZb8.
Finkina, E., Melnikova, D., and Bogdanov, I. (2016).
Lipid transfer proteins as components of the
plant innate immune system: structure, functions,
and applications. Acta Naturae, 8(2):47–61. Onli-
ne:https://n9.cl/6pyyvl.
Gentzel, I., Giese, L., Zhao, W., Alonso, A., and Mac-
key, D. (2019). A simple method for measuring
apoplast hydration and collecting apoplast con-
tents. Plant Physiology, 179(4):1265–1272. Onli-
ne:https://n9.cl/cd1nud.
Ghaedi, M., Naghiha, R., Jannesar, R., and Mirta-
mizdoust, B. (2015). Antibacterial and antifungal
activity of flower extracts of urtica dioica, cha-
maemelum nobile and salvia officinalis: Effects
of Zn[OH]2nanoparticles and hp-2-minh on their
property. Journal of Industrial and Engineering Che-
mistry, 32:353–359. Online:https://n9.cl/5rvne.
Jiang, H., Song, W., Li, A., Yang, X., and Sun, D.
(2011). Identification of genes differentially ex-
pressed in cauliflower associated with resistance
to xanthomonas campestris pv. campestris. Mo-
lecular biology reports, 38:621–629. Online:https://
n9.cl/djhw6.
Johansson, M., Zoete, V., Michielin, O., and Guex,
N. (2012). Defining and searching for struc-
tural motifs using deepview/swiss-pdbviewer.
BMC bioinformatics, 13:1–11. Online:https://n9.
cl/gog0w7.
Kazemian, H., Ghafourian, S., Heidari, H., Amiri,
P., Yamchi, J., Shavalipour, A., Houri, H., Male-
ki, A., and Sadeghifard, N. (2015). Antibacterial,
anti-swarming and anti-biofilm formation activi-
ties of chamaemelum nobile against pseudomo-
nas aeruginosa. Revista da Sociedade Brasileira de
Medicina Tropical, 48:432–436. Online:https://n9.
cl/w42wgt.
Kovaleva, V., Bukhteeva, I., Kit, O., and Nesmelova,
I. (2020). Plant defensins from a structural pers-
pective. International Journal of Molecular Sciences,
21(15):5307. Online:https://n9.cl/rs0vj.
Li, Y., Xiang, Q., Zhang, Q., Huang, Y., and Su, Z.
(2012). Overview on the recent study of antimi-
crobial peptides: origins, functions, relative me-
chanisms and application. Peptides, 37(2):207–215.
Online:https://n9.cl/lmj10.
Melnikova, D., Mineev, K., Finkina, E., Arseniev, A.,
and Ovchinnikova, T. (2016). A novel lipid trans-
fer protein from the dill anethum graveolens l.:
isolation, structure, heterologous expression, and
functional characteristics. Journal of Peptide Scien-
ce, 22(1):59–66. Online:https://n9.cl/p1gau.
Missaoui, K., Gonzalez-Klein, Z., Pazos-Castro, D.,
Hernandez-Ramirez, G., Garrido-Arandia, M.,
Brini, F., Diaz-Perales, A., and Tome-Amat, J.
(2022). Plant non-specific lipid transfer proteins:
An overview. Plant Physiology and Biochemistry,
171:115–127. Online:https://n9.cl/gyqyk.
LAGRANJA:Revista de Ciencias de la Vida 41(1) 2025:118-126.
©2025, Universidad Politécnica Salesiana, Ecuador. 125