Modelo computacional para determinar el nivel óptimo de cargabilidad de los transformadores de potencia del sistema nacional interconectado

Computational model to determine the optimum level of chargeability of the power transformers of the national interconnected system

Juan Rodríguez, Víctor Orejuela

Resumen


En este documento se indica el proceso de desarrollo e implementación de un modelo computacional para determinar el nivel óptimo de cargabilidad de los transformadores de potencia del Sistema Nacional Interconectado del Ecuador. Gracias a las herramientas de las plataformas de software que permiten construir modelos matemáticos para hacer predicciones y optimizar el comportamiento de sistemas complejos, es posible desarrollar un modelo computacional que abarque todos los aspectos técnicos indicados y documentados en la normativa ANSI e IEC, para determinar los parámetros que inciden en la cargabilidad de los transformadores de potencia y las repercusiones que esto tiene en la vida útil de los transformadores. Bajo estos parámetros el modelo computacional, determina una solución; tanto desde el punto de vista técnico, como del económico; ya que al desarrollar este modelo en base a la formulación técnica–económica; se determina la cargabilidad óptima de los transformadores; y se establece una proyección de la vida útil del transformador de potencia dentro de la red de suministro eléctrico.

Palabras clave


ANSI (Instituto Nacional Americano de Normas); formulación técnico-económica; IEC (Comisión Electrotécnica Internacional); modelo computacional; nivel óptimo de cargabilidad.

Texto completo:

PDF

Referencias


CONELEC, “Plan maestro de electrificación – 2012,” 2012.

L. L. Grigsby, Electric Power Generation Transmission and Distribution, 3rd ed., ser. The Electric Power Engineering Handbook. Taylor & Francis, 2012.

K. Najdenkoski, G. Rafajlovski, and V. Dimcev, “Thermal aging of distribution transformers according to ieee and iec standards,” in Power Engineering Society General Meeting, 2007. IEEE. IEEE, 2007, pp. 1–5.

I. 60076-7, Loading guide for Oil – immersed Power Transformers, Std., 2005.

L. Pierce, “Predicting liquid filled transformer loading capability,” IEEE Transactions on Industry Applications, vol. 30, no. 1, pp. 170–178, 1994.

ANSI/IEEE, Distribution, power and regulating transformers, Std., 1994.

F. J. Yébenes Cabrejas, “Gestión de la cargabilidad de transformadores de potencia,” Proyecto de fin de carrera, Universidad Carlos III de Madrid, Madrid, España, 2009.

“IEEE guide for determination of maximum winding temperature rise in liquid-filled transformers,” IEEE Std 1538-2000, 2000.

P. Code, International Standard IEC 60076-7, Std.

O. Ramírez and S. Fernández, “Introducción de un modelo térmico para el diagnóstico en tiempo real de transformadores,” La Habana, Cuba, 2000.

D. Kalluri, Electromagnetic Waves, Materials, and Computation With MATLAB. Taylor & Francis, 2011.

W. Tang, Q. Wu, and Z. Richardson, “A simplified transformer thermal model based on thermalelectric analogy,” IEEE Transactions on Power Delivery, vol. 19, no. 3, pp. 1112–1119, 2004.

B. Lesieutre, W. Hagman, and J. Kirtley, J.L., “An improved transformer top oil temperature model for use in an on-line monitoring and diagnostic system,” IEEE Transactions on Power Delivery, vol. 12, no. 1, pp. 249–256, 1997.

T. Shamsodin, G. Ahmad, F. Issouf, and T. Hamed, “Modeling and simulation of transformer loading capability and hot spot temperature under harmonic conditions„” Electric Power Systems Research, vol. 86, pp. 68–75, May 2012.

IEC-61378-1, Transformers for industrial applications, Std., 1997.

D. J. Tylavsky, Q. He, J. Si, G. A. McCulla, and J. R. Hunt, “Transformer top-oil temperature modeling and simulation,” IEEE Transactions on Industry Applications, vol. 36, no. 5, pp. 1219– 1225, 2000.

A. Emanuel and X. Wang, “Estimation of loss of life of power transformers supplying nonlinear loads,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-104, no. 3, pp. 628–636, 1985.

L. Pierce, “Predicting liquid filled transformer loading capability,” in Petroleum and Chemical Industry Conference, 1992, Record of Conference Papers., Industry Applications Society 39th Annual, 1992, pp. 197–207.

Y.-C. Huang, H.-T. Yang, and C.-L. Huang, “Developing a new transformer fault diagnosis system through evolutionary fuzzy logic,” IEEE Transactions on Power Delivery, vol. 12, no. 2, pp. 761–767, 1997.

O. Gouda, G. Amer, and W. Salem, “Predicting transformer temperature rise and loss of life in the presence of harmonic load currents,” Ain Shams Engineering Journal, vol. 3, no. 2, pp. 113–121, 201




DOI: http://dx.doi.org/10.17163/ings.n9.2013.05

Copyright (c) 2016 Universidad Politécnica Salesiana

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

INDIZACIONES PRINCIPALES

   Resultado de imagen para logo redib logo

   

© 2017, Universidad Politécnica Salesiana del Ecuador