Estructura en Cascada para Filtros de Respuesta de Impulso Finito y Predicción Lineal

Cascade Structure for Finite Impulse Response Filters and Linear Prediction

Walter Humberto Orozco Tupacyupanqui

Resumen


This paper presents a complete analysis of the cascade structure for adaptive transversal filters based on adaptive algorithms. The standard structure of the cascade transversal FIR filter is obtained by replacing the whole structure by small ones with the same impulse response but having a less number of taps than the original structure. Computer simulation result shows the validity, reliability and the limitations that the model could have in its capacity of prediction. The optimal values of the model are compared with those obtained by the standard least mean square and recursive least square adaptive algorithms in order to verify the convergence of the weights and determine how fast this structure achieves those weights. For this case the speed of the algorithm is determined by the number of iterations that the filter requires to reach the minimum square value of its learning curve.

Palabras clave


Cascade structures; Finite impulse response filters; Transversal filters; Linear estimation; LMS algorithm; RLS algorithm.

Texto completo:

PDF PDF (English)

Referencias


B. Widrow and S. Stearns, Adaptive signal processing, 1st ed. Englewood Cliffs, NJ: Prentice-Hall, Inc, 1985.

L. Sibul, Adaptive signal processing, 1st ed. New York: IEEE press, 1987.

A. Sayed, Adaptive filters, 1st ed. New Jersey: Wiley-IEEE Press, 2008. 4] L. B. Jackson and S. L. Wood, “Linear prediction in cascade form,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 26, no. 6, pp. 518–528, 1978.

P. Prandoni and M. Vetterli, “An FIR cascade structure for adaptive linear prediction,” IEEE Transactions on Signal Processing, vol. 46, no. 9, pp. 2566–2571, 1998.

W. Orozco, “A cascade predictor filter of one-tap stages for adaptive linear prediction,” Dec. 2005, Final project, New York Institute of Technology, Old Westbury, The United States.

J. Martinez and K. Nakano, “Cascade lattice IIR adaptive filter structure using simultaneous perturbation method for self-adjusting SHARF algorithm,” in SICE Annual Conference, 2008. IEEE, 2008, pp. 2156–2161.

D. Shi and Y. Yu, “Design of discrete-valued linear phase FIR filters in cascade form,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 7, pp. 1627–1636, 2011.

R. Patnaik, V. Vandrasi, C. Madsen, A. Eftekhar, and A. Adibi, “Comparison of cascade, lattice, and parallel filter architectures,” Journal of Lightwave Technology,, vol. 28, no. 23, pp. 3463–3469, 2010.

H. N. Apolo Castillo and A. E. Córdova Medina, “Modelación matemática y simulación de un filtro digital híbrido FIR adaptativo lineal óptimo,” 2010, Proyecto de graduación, Universidad Politécnica Salesiana, Cuenca, Ecuador.

A. Sayed, Fundamentals of adaptive filtering, 1st ed. New Jersey: Wiley-IEEE Press, 2003.




DOI: http://dx.doi.org/10.17163/ings.n8.2012.03

Copyright (c) 2016 Universidad Politécnica Salesiana

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

INDIZACIONES PRINCIPALES

   Resultado de imagen para logo redib logo

   

© 2017, Universidad Politécnica Salesiana del Ecuador