Operación remota de un robot móvil usando un teléfono inteligente

Remote operation of a mobile robot using a smartphone

Carlos Alberto Flores Vázquez, Fco. Abiud Rojas de Silva G., Karla A. Trejo Ramírez

Resumen


En este artículo se presenta un acercamiento al mando a distancia de un robot móvil que emplea un teléfono inteligente para comandarlo. La idea principal es recolectar los datos generados por el acelerómetro incluido en el teléfono inteligente. Los datos son los resultados de mover el teléfono en la dirección de los ejes Y y Z. Tales datos serán usados para entrenar dos redes neuronales que definirán la dirección del movimiento del robot móvil. Las salidas obtenidas de las redes neuronales serán procesadas para calcular y trazar la trayectoria, que es determinada por el modelo cinemático para un robot móvil tipo triciclo.


Palabras clave


sistemas remotos, redes neuronales, robot móvil, teléfono inteligente, acelerómetro.

Texto completo:

PDF HTML

Referencias


J. Cui, S. Tosunoglu, R. Roberts, C. Moore, and D. W. Repperger, “A review of teleoperation system control,” in Proceedings of the 2006 Florida conference recente advances in robotics (FCRAR), Florida Atlantic University,FL, 2003.

P. P. Batsomboon, S. Tosunoglu, and D. W. Repperger,“Development of a mechatronic system: a telesensation system for training and teleoperation,” Chapter, Recent Advances in Mechatronics, Springer-Verlag, New York, pp. 304–321, 1999.

H. Hu, L. Yu, P. Wo Tsui, and Q. Zhou, “Internet-based robotic systems for teleoperation,” Assembly Automation, vol. 21, no. 2, pp. 143–152, 2001.

E. Slawinski, V. Mut, and J. Postigo, “Teleoperation of mobile robots,” Latin American applied research, vol. 36, no. 2, pp. 79–86, 2006.

Y. Kimitsuka, T. Suzuki, and K. Sawai, “Development of mobile robot teleoperation system utilizing robot sensor network,” in Networked Sensing Systems, 2008. INSS 2008. 5th International Conference on, pp. 250-250, IEEE, 2008.

A. Uribe, S. Alves, J. M. Rosário, B. Pérez-Gutiérrez, et al., “Mobile robotic teleoperation using gesture based human interfaces,” in Robotics Symposium, 2011 IEEE IX Latin American and IEEE Colombian Conference on Automatic Control and Industry Applications(LARC), pp. 1–6, IEEE, 2011.

H. Surmann, D. Holz, S. Blumental, T. Linder, P. Molitor, and V. Tretyakov, “Teleoperated visual inspection and surveillance with unmanned ground and aerial vehicles.,” iJOE, vol. 4, no. 4, pp. 26–38, 2008.

P. Vogt and J. Kuhn, “Analyzing free fall with a smartphone acceleration sensor,” The Physics Teacher, vol. 50, no. 3, pp. 182–183, 2012.

A. Samà, C. Angulo, D. Pardo, A. Català, and J. Cabestany, “Analyzing human gait and posture by combining feature selection and kernel methods,” Neurocomputing, vol. 74, no. 16, pp. 2665–2674, 2011.

G. Hache, E. Lemaire, and N. Baddour, “Mobility change-of-state detection using a smartphone-based approach,” in Medical Measurements and Applications Proceedings (MeMeA), 2010 IEEE International Workshop on, pp. 43–46, IEEE, 2010.

M. O. Derawi, “Accelerometer-based gait analysis, a survey,” Nor Informasjonssikkerhetskonferanse NISK, 2010.

C. Schmid, “Ml connect.” http://mlconnect.chschmid.com/index.php/Main Page, 2012.

H. Demuth, M. Beale, and M.Works, “MATLAB: Neural Network Toolbox: User’s Guide,” Math Works, 1992.

J. C. Moctezuma, “Neural network toolbox de matlab,” Ciencias Computacionales, Septiembre del 2006.




DOI: http://dx.doi.org/10.17163/ings.n17.2017.04

Copyright (c) 2017 Universidad Politécnica Salesiana

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

INDIZACIONES PRINCIPALES

   Resultado de imagen para logo redib logo

   

© 2017, Universidad Politécnica Salesiana del Ecuador